This document specifies a method for estimating the loudness and loudness level of both stationary and time-varying sounds as perceived by otologically normal adult listeners under specific listening conditions. The sounds may be recorded using a single microphone, using a head and torso simulator, or, for sounds presented via earphones, the electrical signal delivered to the earphones may be used. The method is based on the Moore-Glasberg-Schlittenlacher algorithm. NOTE 1 Users who wish to study the details of the calculation method can review or implement the source code which is entirely informative and provided with the standard for the convenience of the user. This method can be applied to any sounds, including tones, broadband noises, complex sounds with sharp line spectral components, musical sounds, speech, and impact sounds such as gunshots and sonic booms. Calculation of a single value for the overall loudness over the entire period of a time-varying signal lasting more than 5 s is outside the scope of this document. NOTE 2 It has been shown that, for steady tones, this method provides a good match to the contours of equal loudness level as defined in ISO 226:2003[18] and the reference threshold of hearing as defined in ISO 389-7:2019[19].

  • Standard
    29 pages
    English language
    sale 15% off

This document describes a method for the objective determination of the audibility of tones in environmental noise. This document is intended to augment the usual method for evaluation on the basis of aural impression, in particular, in cases in which there is no agreement on the degree of the audibility of tones. The method described can be used if the frequency of the tone being evaluated is equal to, or greater than, 50 Hz. In other cases, if the tone frequency is below 50 Hz, or if other types of noise (such as screeching) are captured, then this method cannot replace subjective evaluation. NOTE The procedure has not been validated below 50 Hz. The method presented herein can be used in continuous measurement stations that work automatically.

  • Technical specification
    33 pages
    English language
    sale 15% off
  • Draft
    35 pages
    English language
    sale 15% off
  • Draft
    35 pages
    English language
    sale 15% off

This document specifies methodology for qualifying acoustic spaces as anechoic and hemi-anechoic spaces meeting the requirements of a free sound field.
This document specifies discrete-frequency and broad-band test methods for quantifying the performance of anechoic and hemi-anechoic spaces, defines the qualification procedure for an omni-directional sound source suitable for free-field qualification, gives details of how to present the results and describes uncertainties of measurement.
This document has been developed for qualifying anechoic and hemi-anechoic spaces for a variety of acoustical measurement purposes. It is expected that, over time, various standards and test codes will refer to this document in order to qualify an anechoic or hemi-anechoic space for a particular measurement. Annex D provides guidelines for the specification of test parameters and qualification criteria for referencing documents.
In the absence of specific requirements or criteria, Annex A provides qualification criteria and measurement requirements to qualify anechoic and hemi-anechoic spaces for general purpose acoustical measurements.
This document describes the divergence loss method for measuring the free sound field performance of an acoustic environment.

  • Standard
    30 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This method objectively categorises sources by determination of the prominence of impulsive sound, with the aim of correlating to community response. This method for measuring the prominence of impulsive sounds is intended for sources not identified as gunfire or high-energy impulsive sound. It typically produces adjustments in the range 0,0 dB to 9,0 dB. These adjustments are intended to be used to categorise the sources as either regular impulsive or highly impulsive sound sources and apply the penalty indicated in ISO 1996-1. However, the adjustments may be applied directly, as is done in NT ACOU 112[2], and BS 4142[3]. ISO 1996-2 provides additional guidance for performing these measurements. The method is intended for use on sources with impulsive characteristics that are not already categorised in ISO 1996-1. A non-exhaustive list of examples includes compressed air release, scrap handling, goods delivery, fork lifts with rattling forks, skateboard ramps, industrial shearing, gas discharges, percussive tools in demolition, powered riveting, etc. The method is not intended for use on sounds from firearms. Although the measurements of prominence may give relevant results, research has shown the response to these sources is influenced by factors outside of the scope of this document. In addition, the method is not intended to use for high-energy impulsive sound sources as specified in ISO 1996-1. NOTE This method is not intended for occupational hearing loss, which is outside the scope of this document. See Annex A for recommended additional research.

  • Technical specification
    10 pages
    English language
    sale 15% off

This document specifies methodology for qualifying acoustic spaces as anechoic and hemi-anechoic spaces meeting the requirements of a free sound field.
This document specifies discrete-frequency and broad-band test methods for quantifying the performance of anechoic and hemi-anechoic spaces, defines the qualification procedure for an omni-directional sound source suitable for free-field qualification, gives details of how to present the results and describes uncertainties of measurement.
This document has been developed for qualifying anechoic and hemi-anechoic spaces for a variety of acoustical measurement purposes. It is expected that, over time, various standards and test codes will refer to this document in order to qualify an anechoic or hemi-anechoic space for a particular measurement. Annex D provides guidelines for the specification of test parameters and qualification criteria for referencing documents.
In the absence of specific requirements or criteria, Annex A provides qualification criteria and measurement requirements to qualify anechoic and hemi-anechoic spaces for general purpose acoustical measurements.
This document describes the divergence loss method for measuring the free sound field performance of an acoustic environment.

  • Standard
    30 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies basic methods for speech recognition tests for audiological applications.
NOTE       Examples of speech materials are given in Annex A.
In order to ensure minimum requirements of precision and comparability between different test procedures including speech recognition tests in different languages, this document specifies requirements for the composition, validation and evaluation of speech test materials, and the realization of speech recognition tests. This document does not specify the contents of the speech material because of the variety of languages.
Furthermore, this document also specifies the determination of reference values and requirements for the realization and manner of presentation. In addition, there are features of speech tests described which are important to be specified, but which are not understood as a requirement.
This document specifies procedures and requirements for speech audiometry with the recorded test material being presented by an audiometer through a transducer, e.g., an earphone, bone vibrator, or loudspeaker arrangement for sound field audiometry. Methods for using noise either for masking the non-test ear or as a competing sound are described.
Some test subjects, for example children, can require modified test procedures not specified in this document.
Specialized tests, such as those used for evaluating directional hearing and dichotic hearing, are outside the scope of this document.

  • Standard
    50 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    44 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 61757 specifies the terminology, characteristic performance parameters,
related test and calculation methods, as well as specific test equipment for interrogation units
used in distributed fibre optic acoustic sensing and vibration measurement systems. This
document refers to the Rayleigh backscatter and phase detection method by phase-sensitive
coherent optical time-domain reflectometry (ϕ-OTDR) only. Quasi-static and low frequency
operation modes are not covered by this document.
Generic specifications for fibre optic sensors are defined in IEC 61757.

  • Standard
    52 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for the measurement of room acoustic parameters in unoccupied
open-plan offices. It specifies measurement procedures, the apparatus needed, the coverage required,
the method for evaluating the data, and the presentation of the test report.
This document describes a group of single-number quantities indicating the room acoustic performance
of an open-plan office in a condition when one person is speaking. They focus on spatial decay of speech
while the quantities in ISO 3382-2 focus on temporal decay of sound

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document applies to hearing aid fitting management (HAFM) services offered by hearing aid professionals (HAP) when providing benefit for their clients. The provision of hearing aids relies on the knowledge and practices of a hearing aid professional, to ensure the proper fitting and adequate service in the interest of the client with hearing loss.
This document specifies general processes of HAFM from the client profile to the follow-up through administering, organising and controlling hearing aid fitting through all stages. It also specifies important preconditions such as education, facilities and systems that are required to ensure proper services.
The focus of this document is the services offered to the majority of adult clients with hearing impairment. It is recognized that certain populations with hearing loss such as children, persons with other disabilities or persons with implantable devices can require services outside the scope of this document. This document generally applies to air conduction hearing aids and for the most part also to bone conduction devices.
Hearing loss can be a consequence of serious medical conditions. Hearing aid professionals are not in a position to diagnose or treat such conditions. When assisting clients seeking hearing rehabilitation without prior medical examination, hearing aid professionals are expected to be observant of symptoms of such conditions and refer to proper medical care.
Further to the main body of the document, which specifies the HAFM requirements and processes, several informative annexes are provided. Appropriate education of hearing aid professionals is vital for exercising HAFM. Annex A defines the competencies required for the HAFM processes. Annex B offers a recommended curriculum for the education of hearing aid professionals. Annex C is an example of an appropriate fitting room. Annex D gives guidance on the referral of clients for medical or other specialist examination and treatment. Annex E is a recommendation for important information to be exchanged with the client during the process of HAFM. Annex F is a comprehensive terminology list offering definitions of the most current terms related to HAFM.
It is the intention that these annexes be helpful to those who wish to deliver HAFM of the highest quality.

  • Standard
    52 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    49 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies basic framework measurement methods for sound immission from sound sources placed close to the ear. These measurements are carried out with a manikin, equipped with ear simulators including microphones. The measured values are subsequently converted into corresponding free-field or diffuse-field levels. The results are given as free-field related or diffuse-field related equivalent continuous A-weighted sound pressure levels. The technique is denoted the manikin technique.
This document is applicable to exposure to sound from sources close to the ear, for example during equipment tests or at the workplace to sound from earphones or hearing protectors with audio communication facilities.
This document is applicable in the frequency range from 20 Hz to 10 kHz. For frequencies above 10 kHz, ISO 11904-1 can be used.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document applies to hearing aid fitting management (HAFM) services offered by hearing aid professionals (HAP) when providing benefit for their clients. The provision of hearing aids relies on the knowledge and practices of a hearing aid professional, to ensure the proper fitting and adequate service in the interest of the client with hearing loss.
This document specifies general processes of HAFM from the client profile to the follow-up through administering, organising and controlling hearing aid fitting through all stages. It also specifies important preconditions such as education, facilities and systems that are required to ensure proper services.
The focus of this document is the services offered to the majority of adult clients with hearing impairment. It is recognized that certain populations with hearing loss such as children, persons with other disabilities or persons with implantable devices can require services outside the scope of this document. This document generally applies to air conduction hearing aids and for the most part also to bone conduction devices.
Hearing loss can be a consequence of serious medical conditions. Hearing aid professionals are not in a position to diagnose or treat such conditions. When assisting clients seeking hearing rehabilitation without prior medical examination, hearing aid professionals are expected to be observant of symptoms of such conditions and refer to proper medical care.
Further to the main body of the document, which specifies the HAFM requirements and processes, several informative annexes are provided. Appropriate education of hearing aid professionals is vital for exercising HAFM. Annex A defines the competencies required for the HAFM processes. Annex B offers a recommended curriculum for the education of hearing aid professionals. Annex C is an example of an appropriate fitting room. Annex D gives guidance on the referral of clients for medical or other specialist examination and treatment. Annex E is a recommendation for important information to be exchanged with the client during the process of HAFM. Annex F is a comprehensive terminology list offering definitions of the most current terms related to HAFM.
It is the intention that these annexes be helpful to those who wish to deliver HAFM of the highest quality.

  • Standard
    52 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    49 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies laboratory methods for measuring the impact sound insulation of floor
assemblies.
The test results can be used to compare the sound insulation properties of building elements, classify
elements according to their sound insulation capabilities, help design building products which require
certain acoustic properties and estimate the in situ performance in complete buildings.
The measurements are performed in laboratory test facilities in which sound transmission via flanking
paths is suppressed. The results of measurements made in accordance with this document are not
applicable directly to the field situation without accounting for other factors affecting sound insulation,
such as flanking transmission, boundary conditions, and loss factor.
A test method is specified that uses the standard tapping machine (see ISO 10140-5:2021, Annex E)
to simulate impact sources like human footsteps when a person is wearing shoes. Alternative test
methods, using a modified tapping machine or a heavy/soft impact source (see ISO 10140-5:2021,
Annex F) to simulate impact sources with strong low frequency components, such as human footsteps
(bare feet) or children jumping, are also specified.
This document is applicable to all types of floors (whether heavyweight or lightweight) with all types of
floor coverings. The test methods apply only to laboratory measurements.

  • Standard
    24 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a laboratory method for measuring the airborne sound insulation of building products, such as walls, floors, doors, windows, shutters, façade elements, façades, glazing, small technical elements, for instance transfer air devices, airing panels (ventilation panels), outdoor air intakes, electrical raceways, transit sealing systems and combinations, for example walls or floors with linings, suspended ceilings or floating floors.
The test results can be used to compare the sound insulation properties of building elements, classify elements according to their sound insulation capabilities, help design building products which require certain acoustic properties and estimate the in situ performance in complete buildings.
The measurements are performed in laboratory test facilities in which sound transmission via flanking paths is suppressed. The results of measurements made in accordance with this document are not applicable directly to the field situation without accounting for other factors affecting sound insulation, such as flanking transmission, boundary conditions and total loss factor.

  • Standard
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Amendment
    7 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Amendment
    7 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    5 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies test requirements for the laboratory measurement of the sound insulation of
building elements and products, including detailed requirements for the preparation and mounting of
the test elements, and for the operating and test conditions. It also specifies the applicable quantities,
and provides additional test information for reporting.
The general procedures for airborne and impact sound insulation measurements are given in
ISO 10140-2 and ISO 10140-3, respectively.

  • Standard
    63 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    58 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the basic measurement procedures for airborne and impact sound insulation
of building elements in laboratory test facilities.

  • Standard
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies laboratory test facilities and equipment for sound insulation measurements of
building elements, such as:
— components and materials;
— building elements;
— technical elements (small building elements);
— sound insulation improvement systems.
It is applicable to laboratory test facilities with suppressed radiation from flanking elements and
structural isolation between source and receiving rooms.
This document specifies qualification procedures for use when commissioning a new test facility
with equipment for sound insulation measurements. It is intended that these procedures be repeated
periodically to ensure that there are no issues with the equipment and the test facility.

  • Standard
    48 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    45 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies procedures for assessing the measurement uncertainty of sound insulation in building acoustics. It provides for
—     a detailed uncertainty assessment;
—     a determination of uncertainties by inter-laboratory tests;
—     an application of uncertainties.
Furthermore, typical uncertainties are given for quantities determined according to ISO 10140 (all parts), ISO 16283 (all parts) and ISO 717 (all parts).

  • Standard
    29 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    26 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies basic framework measurement methods for sound immission from sound
sources placed close to the ear. These measurements are carried out with a manikin, equipped
with ear simulators including microphones. The measured values are subsequently converted into
corresponding free-field or diffuse-field levels. The results are given as free-field related or diffusefield
related equivalent continuous A-weighted sound pressure levels. The technique is denoted the
manikin technique.
This document is applicable to exposure to sound from sources close to the ear, for example during
equipment tests or at the workplace to sound from earphones or hearing protectors with audio
communication facilities.
This document is applicable in the frequency range from 20 Hz to 10 kHz. For frequencies above 10 kHz,
ISO 11904-1 can be used.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies methodology for qualifying acoustic spaces as anechoic and hemi-anechoic spaces meeting the requirements of a free sound field. This document specifies discrete-frequency and broad-band test methods for quantifying the performance of anechoic and hemi-anechoic spaces, defines the qualification procedure for an omni-directional sound source suitable for free-field qualification, gives details of how to present the results and describes uncertainties of measurement. This document has been developed for qualifying anechoic and hemi-anechoic spaces for a variety of acoustical measurement purposes. It is expected that, over time, various standards and test codes will refer to this document in order to qualify an anechoic or hemi-anechoic space for a particular measurement. Annex D provides guidelines for the specification of test parameters and qualification criteria for referencing documents. In the absence of specific requirements or criteria, Annex A provides qualification criteria and measurement requirements to qualify anechoic and hemi-anechoic spaces for general purpose acoustical measurements. This document describes the divergence loss method for measuring the free sound field performance of an acoustic environment.

  • Standard
    22 pages
    English language
    sale 15% off
  • Standard
    23 pages
    French language
    sale 15% off
  • Draft
    22 pages
    English language
    sale 15% off
  • Draft
    23 pages
    French language
    sale 15% off

This document specifies an alternating airflow method for the determination of the airflow resistance[5], [6] of porous materials for acoustical applications.
Determination of the airflow resistance based on static flow is described in ISO 9053‑1.

  • Standard
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies how to calculate:
—     the uncertainty of sound absorption coefficients and equivalent sound absorption areas measured according to ISO 354;
—     the uncertainty of the practical and weighted sound absorption coefficients determined according to ISO 11654;
—     the uncertainty of the object sound absorption coefficient according to ISO 20189; and
—     the uncertainty of the single number rating determined according to EN 1793‑1.
Furthermore, the use of uncertainties in reporting measured or weighted sound absorption coefficients is explained.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a laboratory substitution method to determine the insertion loss without flow
of ducted, mainly absorbent, circular and rectangular silencers, as well as other duct elements for use
in ventilating and air-conditioning systems.
NOTE Laboratory measurement procedures for ducted silencers with superimposed flow are described in
ISO 7235[5].
This document is applicable to silencers where the design velocity does not exceed 15 m/s. As the
method does not include self-generated flow noise, this document is not suitable for tests on silencers
where this type of noise is of great importance for the evaluation of the silencer performance. As most
silencers, particularly in offices and dwelling, have design velocities below 15 m/s, this document can
often be a cost-efficient alternative to ISO 7235[5].
The insertion loss determined according to this document in a laboratory is not necessarily the same
as the insertion loss obtained in an installation in the field. Different sound and flow fields in the duct
yield different results. In this document, the sound field is dominated by plane wave modes. Due to the
use of regular test ducts, the results can include some flanking transmission via structural vibrations
in the duct walls that sets an upper limit to the insertion loss that can be determined.
This document is intended to be used for circular silencers with diameters of 80 mm to 2 000 mm or for
rectangular silencers with cross-sectional areas within the same range.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a laboratory measurement method to determine noise radiated from a floor covering on a standard concrete floor when excited by a standard tapping machine.

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies procedures for assessing the measurement uncertainty of sound insulation in
building acoustics. It provides for
— a detailed uncertainty assessment;
— a determination of uncertainties by inter-laboratory tests;
— an application of uncertainties.
Furthermore, typical uncertainties are given for quantities determined according to ISO 10140 (all parts),
ISO 16283 (all parts) and ISO 717 (all parts).

  • Standard
    29 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    26 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Amendment
    7 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Amendment
    7 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    5 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    1 page
    English language
    sale 15% off
  • Standard
    1 page
    French language
    sale 15% off
  • Draft
    1 page
    English language
    sale 15% off
  • Draft
    1 page
    French language
    sale 15% off

This International Standard specifies an alternating airflow method for the determination of the airflow resistance[1] [2] of porous materials for acoustical applications.
Determination of the airflow resistance based on static flow is described in ISO 9053-1.

  • Standard
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 10848 (all parts) specifies measurement methods to characterize the flanking transmission of one
or several building components. This document considers only laboratory measurements.
This part of ISO 10848 specifies measurement methods to be performed in a laboratory to characterize
the acoustic radiation of a building element when mechanically or acoustically excited. The measured
quantities can be used to compare products, or to express a requirement, or as input data for prediction
methods, such as ISO 12354-1 and -2.

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document facilitates a standardized interpretation and a verifiably consistent software implementation of the sound propagation part of the calculation method CNOSSOS-EU:2015 according to ISO 17534-1. Other parts of CNOSSOS-EU:2015, such as the source models or the calculation method for aircraft noise, are beyond the scope of this document. This document provides an agreed interpretation of ambiguous aspects of the sound propagation part of CNOSSOS-EU:2015, a set of illustrative test cases along with reference solutions, and an example of a template form for the declaration of conformity for software manufacturers.

  • Technical report
    124 pages
    English language
    sale 15% off
  • Draft
    124 pages
    English language
    sale 15% off

This document specifies how to calculate:
— the uncertainty of sound absorption coefficients and equivalent sound absorption areas measured
according to ISO 354;
— the uncertainty of the practical and weighted sound absorption coefficients determined according
to ISO 11654;
— the uncertainty of the object sound absorption coefficient according to ISO 20189; and
— the uncertainty of the single number rating determined according to EN 1793-1.
Furthermore, the use of uncertainties in reporting measured or weighted sound absorption coefficients
is explained.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

EN-ISO 16283-2 specifies procedures to determine the impact sound insulation using sound pressure measurements with an impact source operating on a floor or stairs in a building. These procedures are intended for room volumes in the range from 10 m3 to 250 m3 in the frequency range from 50 Hz to 5 000 Hz. The test results can be used to quantify, assess and compare the impact sound insulation in unfurnished or furnished rooms where the sound field may or may not approximate to a diffuse field.

  • Standard
    53 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    50 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies how to calculate: — the uncertainty of sound absorption coefficients and equivalent sound absorption areas measured according to ISO 354; — the uncertainty of the practical and weighted sound absorption coefficients determined according to ISO 11654; — the uncertainty of the object sound absorption coefficient according to ISO 20189; and — the uncertainty of the single number rating determined according to EN 1793‑1. Furthermore, the use of uncertainties in reporting measured or weighted sound absorption coefficients is explained.

  • Standard
    8 pages
    English language
    sale 15% off
  • Standard
    8 pages
    French language
    sale 15% off
  • Draft
    8 pages
    English language
    sale 15% off

This document specifies procedures for assessing the measurement uncertainty of sound insulation in building acoustics. It provides for — a detailed uncertainty assessment; — a determination of uncertainties by inter-laboratory tests; — an application of uncertainties. Furthermore, typical uncertainties are given for quantities determined according to ISO 10140 (all parts), ISO 16283 (all parts) and ISO 717 (all parts).

  • Standard
    21 pages
    English language
    sale 15% off
  • Standard
    21 pages
    French language
    sale 15% off

EN-ISO 80000-8 gives names, symbols, definitions and units for quantities of acoustics. Where appropriate, conversion factors are also given.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 3743-2:2018 specifies a relatively simple engineering method for determining the sound power levels of small, movable noise sources. The methods specified in this document are suitable for measurements of all types of noise within a specified frequency range, except impulsive noise consisting of isolated bursts of sound energy which are covered by ISO 3744 and ISO 3745.
NOTE       A classification of different types of noise is given in ISO 12001.

  • Standard
    48 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document applies to hearing aid fitting management (HAFM) services offered by hearing aid professionals (HAP) when providing benefit for their clients. The provision of hearing aids relies on the knowledge and practices of a hearing aid professional, to ensure the proper fitting and adequate service in the interest of the client with hearing loss. This document specifies general processes of HAFM from the client profile to the follow-up through administering, organising and controlling hearing aid fitting through all stages. It also specifies important preconditions such as education, facilities and systems that are required to ensure proper services. The focus of this document is the services offered to the majority of adult clients with hearing impairment. It is recognized that certain populations with hearing loss such as children, persons with other disabilities or persons with implantable devices can require services outside the scope of this document. This document generally applies to air conduction hearing aids and for the most part also to bone conduction devices. Hearing loss can be a consequence of serious medical conditions. Hearing aid professionals are not in a position to diagnose or treat such conditions. When assisting clients seeking hearing rehabilitation without prior medical examination, hearing aid professionals are expected to be observant of symptoms of such conditions and refer to proper medical care. Further to the main body of the document, which specifies the HAFM requirements and processes, several informative annexes are provided. Appropriate education of hearing aid professionals is vital for exercising HAFM. Annex A defines the competencies required for the HAFM processes. Annex B offers a recommended curriculum for the education of hearing aid professionals. Annex C is an example of an appropriate fitting room. Annex D gives guidance on the referral of clients for medical or other specialist examination and treatment. Annex E is a recommendation for important information to be exchanged with the client during the process of HAFM. Annex F is a comprehensive terminology list offering definitions of the most current terms related to HAFM. It is the intention that these annexes be helpful to those who wish to deliver HAFM of the highest quality.

  • Standard
    43 pages
    English language
    sale 15% off
  • Standard
    47 pages
    French language
    sale 15% off

EN-ISO 389-7 in addition to ISO 16092-1, specifies the technical safety requirements and measures to be adopted by persons undertaking the design, manufacture and supply of pneumatic presses which are intended to work cold metal or material partly of cold metal. This document deals with all significant hazards relevant for pneumatic presses, when they are used as intended and under the conditions of misuse which are reasonably foreseeable by the manufacturer (see Clause 4). All the phases of the lifetime of the machinery as described in ISO 12100:2010, 5.4, have been taken into consideration. The data are given in numerical form for the preferred frequencies in the one-third-octave series from 20 Hz to 16 000 Hz inclusive in accordance with ISO 266 and, in addition, for some intermediate audiometric frequencies up to 18 000 Hz. The threshold data differ from the audiometric zero specified in ISO 389-1, ISO 389-2, ISO 389-5 and ISO 389-8, since the latter refer to monaural listening through earphones with sound pressure levels referred to specified couplers and ear simulators. Direct comparison between the data in the parts of ISO 389 mentioned above and in this document is therefore not appropriate.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides requirements and supporting information on analysis of data collected in-situ through methods as specified in ISO/TS 12913-2.

  • Technical specification
    22 pages
    English language
    sale 15% off

This document specifies a relatively simple engineering method for determining the sound power levels of small, movable noise sources. The methods specified in this document are suitable for measurements of all types of noise within a specified frequency range, except impulsive noise consisting of isolated bursts of sound energy which are covered by ISO 3744 and ISO 3745.

  • Standard
    48 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This International Standard specifies the audio reproduction method for normalized loudness
level of audio sources for consumer equipment and systems.

  • Amendment
    6 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    4 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 3740:2019 gives guidance for the use of a set of twelve basic International Standards (see Tables 1, 2 and 3) describing various methods for determining sound power levels from all types of machinery, equipment and products. It provides guidance on the selection of one or more of these standards, appropriate to any particular type of sound source, measurement environment and desired accuracy. The guidance given applies to airborne sound. It is for use in the preparation of noise test codes (see ISO 12001) and also in noise emission testing where no specific noise test code exists. Such standardized noise test codes can recommend the application of particular basic International Standard(s) and give detailed requirements on mounting and operating conditions for a particular family to which the machine under test belongs, in accordance with general principles given in the basic standards.
ISO 3740:2019 is not intended to replace any of the details of, or add any additional requirements to, the individual test methods in the basic International Standards referenced.
NOTE 1    Two quantities which complement each other can be used to describe the noise emission of machinery, equipment and products. One is the emission sound pressure level at a specified position and the other is the sound power level. The International Standards which describe the basic methods for determining emission sound pressure levels at work stations and at other specified positions are ISO 11200 to ISO 11205 (References [20] to [25]).
NOTE 2    The sound energy level mentioned in ISO 3741 to ISO 3747 is not addressed in this document as it is not mentioned in any legal requirement. Its application is limited to very special cases of a single burst of sound energy or transient sound defined in ISO 12001.

  • Standard
    44 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 60268 specifies an acoustical measurement method that applies to electroacoustical
transducers and passive and active sound systems, such as loudspeakers, TV-sets,
multi-media devices, personal portable audio devices, automotive sound systems and
professional equipment. The device under test (DUT) can be comprised of electrical
components performing analogue and digital signal processing prior to the passive actuators
performing a transduction of the electrical input into an acoustical output signal. This
document describes only physical measurements that assess the transfer behaviour of the
DUT between an arbitrary analogue or digital input signal and the acoustical output at any
point in the near and far field of the system. This includes operating the DUT in both the small
and large signal domains. The influence of the acoustical boundary conditions of the target
application (e.g. car interior) can also be considered in the physical evaluation of the sound
system. This document does not assess the perception and cognitive evaluation of the
reproduced sound and the impact of perceived sound quality.
NOTE Some measurement methods defined in this document can be applied to headphones, headsets,
earphones and earsets in accordance with [1]1. This document does not apply to microphones and other sensors.
This document does not require access to the state variables (voltage, current) at the electrical terminals of the
transducer. Sensitivity, electric input power and other characteristics based on the electrical impedance will be
described in a separate future standard document, IEC 60268-22, dedicated to electrical and mechanical
measurements.

  • Standard
    80 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the measurement of the determination of the static airflow resistance[1,2], in a laminar flow regime, of porous materials for acoustical applications.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document gives guidance for the use of a set of twelve basic International Standards (see Tables 1,
2 and 3) describing various methods for determining sound power levels from all types of machinery,
equipment and products. It provides guidance on the selection of one or more of these standards,
appropriate to any particular type of sound source, measurement environment and desired accuracy.
The guidance given applies to airborne sound. It is for use in the preparation of noise test codes (see
ISO 12001) and also in noise emission testing where no specific noise test code exists. Such standardized
noise test codes can recommend the application of particular basic International Standard(s) and give
detailed requirements on mounting and operating conditions for a particular family to which the
machine under test belongs, in accordance with general principles given in the basic standards.
This document is not intended to replace any of the details of, or add any additional requirements to,
the individual test methods in the basic International Standards referenced.
NOTE 1 Two quantities which complement each other can be used to describe the noise emission of machinery,
equipment and products. One is the emission sound pressure level at a specified position and the other is the
sound power level. The International Standards which describe the basic methods for determining emission
sound pressure levels at work stations and at other specified positions are ISO 11200 to ISO 11205 (References
[20] to [25]).
NOTE 2 The sound energy level mentioned in ISO 3741 to ISO 3747 is not addressed in this document as it is
not mentioned in any legal requirement. Its application is limited to very special cases of a single burst of sound
energy or transient sound defined in ISO 12001.

  • Standard
    44 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 3740:2019 gives guidance for the use of a set of twelve basic International Standards (see Tables 1, 2 and 3) describing various methods for determining sound power levels from all types of machinery, equipment and products. It provides guidance on the selection of one or more of these standards, appropriate to any particular type of sound source, measurement environment and desired accuracy. The guidance given applies to airborne sound. It is for use in the preparation of noise test codes (see ISO 12001) and also in noise emission testing where no specific noise test code exists. Such standardized noise test codes can recommend the application of particular basic International Standard(s) and give detailed requirements on mounting and operating conditions for a particular family to which the machine under test belongs, in accordance with general principles given in the basic standards. ISO 3740:2019 is not intended to replace any of the details of, or add any additional requirements to, the individual test methods in the basic International Standards referenced. NOTE 1 Two quantities which complement each other can be used to describe the noise emission of machinery, equipment and products. One is the emission sound pressure level at a specified position and the other is the sound power level. The International Standards which describe the basic methods for determining emission sound pressure levels at work stations and at other specified positions are ISO 11200 to ISO 11205 (References [20] to [25]). NOTE 2 The sound energy level mentioned in ISO 3741 to ISO 3747 is not addressed in this document as it is not mentioned in any legal requirement. Its application is limited to very special cases of a single burst of sound energy or transient sound defined in ISO 12001.

  • Standard
    35 pages
    English language
    sale 15% off
  • Standard
    35 pages
    French language
    sale 15% off

This document specifies the measurement of the determination of the static airflow resistance[1,2], in a
laminar flow regime, of porous materials for acoustical applications.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day