This document specifies a micro gas chromatography method for the on-line or offline determination of the content of five terpenes in biomethane, namely: — alpha-pinene, — beta-pinene, — para-cymene, — limonene, — 3-carene. The method is specifically developed for these five compounds. Information about the compounds is given in Annex A. The method is applicable to the determination of individual amount fractions of the five terpenes from 1 µmol/mol up to and including 10 µmol/mol. With minor modifications it can also be used for terpene amount fractions above 10 µmol/mol.

  • Standard
    7 pages
    English language
    sale 15% off
  • Standard
    8 pages
    French language
    sale 15% off

This document specifies a method for the determination of drag reduction of slick water, which is mainly used to evaluate the drag reduction performance of slick water. This document uses the pipeline method to evaluate the drag reduction, which is currently recognized as the best method to evaluate the drag reduction performance. This document describes the device, experimental conditions and operating steps in detail. The drag reduction value obtained by evaluation according to this document can effectively represent the on-site drag reduction performance.

  • Standard
    5 pages
    English language
    sale 15% off

This document specifies the determination of the concentration of alkanolamines in biomethane. The measurement method involves thermal desorption gas chromatography with flame ionization and/or mass spectrometry detectors (TD-GC-MS/FID). The described method is specifically developed for the analysis of five amine compounds, namely:
— monoethanolamine (MEA);
— diglycolamine (DGA);
— diethanolamine (DEA);
— N-methyldiethanolamine (MDEA);
— piperazine (PZ).
Information about the compounds is given in Annex A.

  • Technical specification
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the determination of the concentration of alkanolamines in biomethane. The measurement method involves thermal desorption gas chromatography with flame ionization and/or mass spectrometry detectors (TD-GC-MS/FID). The described method is specifically developed for the analysis of five amine compounds, namely:
— monoethanolamine (MEA);
— diglycolamine (DGA);
— diethanolamine (DEA);
— N-methyldiethanolamine (MDEA);
— piperazine (PZ).
Information about the compounds is given in Annex A.

  • Technical specification
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is applicable to the determination of the total silicon content in gaseous matrices such
as biomethane, biogas and landfill gas. Silicon is present in a gas phase contained predominantly in
siloxane compounds, trimethylsilane and trimethylsilanol. The analytical form of the silicon measured in
liquid phase after conducted sampling and derivatization procedure is soluble hexafluorosilicate anion
stable in slightly acidified media. Total silicon is expressed as a mass of silicon in the volume of the
analysed gas.
This document is applicable to all stated gas matrices with silicon concentrations up to 5 mg/m3, and it
is prevalently intended for the biomethane matrices containing (0,1 to 0,5) mg/m3. It can be used for
higher concentration but then the absorption efficiency of the bubblers/impingers should be checked
before the results can be regarded as valid. The detection limit of the method is estimated as 0,05
mg/m3 based on a sample volume of 0,020 m3. All compounds present in the gas phase are volatile at
the absorption and derivatization temperature and gaseous siloxanes are trapped in absorbance media
and derivatized into analytical silicon specie are measured by this method. The concentration of the
silicon is measured in diluted derivatization media using atomic emission spectrometer upon
atomisation/ionisation in microwave or inductively coupled plasma.

  • Standard
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is applicable to the measurement of the total silicon content in gaseous matrices such as biomethane and biogas. Silicon is present in a gas phase contained predominantly in siloxane compounds, trimethylsilane and trimethylsilanol. The analytical form of the silicon measured in liquid phase after conducted sampling and derivatization procedure is soluble hexafluorosilicate anion stable in slightly acidified media. Total silicon is expressed as a mass of silicon in the volume of the analysed gas.
This document is applicable to stated gaseous matrices with silicon concentrations up to 5 mg/m3, and it is prevalently intended for the biomethane matrices with Si mass concentration of 0,1 mg/m3 to 0,5 mg/m3.
With adaptation to ensure appropriate absorption efficiency, it can be used for higher concentrations. The detection limit of the method is estimated as 0,05 mg/m3 based on a gas sample volume of 0,020 m3. All compounds present in the gas phase are volatile at the absorption and derivatization temperature and gaseous organosilicon species are trapped in absorbance media and derivatized into analytical silicon that is measured by this method. The concentration of the silicon is measured in diluted derivatization media using atomic emission spectrometry upon atomisation/ionisation in microwave or inductively coupled plasma.
Unless specified otherwise, all volumes and concentrations refer to standard reference conditions (temperature, 273 K, and pressure, 101,325 kPa).
NOTE       When using appropriate dilution factors, the method can also be applied for silicon concentrations above 5 mg/m3.

  • Standard
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is applicable to the measurement of the total silicon content in gaseous matrices such as biomethane and biogas. Silicon is present in a gas phase contained predominantly in siloxane compounds, trimethylsilane and trimethylsilanol. The analytical form of the silicon measured in liquid phase after conducted sampling and derivatization procedure is soluble hexafluorosilicate anion stable in slightly acidified media. Total silicon is expressed as a mass of silicon in the volume of the analysed gas. This document is applicable to stated gaseous matrices with silicon concentrations up to 5 mg/m3, and it is prevalently intended for the biomethane matrices with Si mass concentration of 0,1 mg/m3 to 0,5 mg/m3. With adaptation to ensure appropriate absorption efficiency, it can be used for higher concentrations. The detection limit of the method is estimated as 0,05 mg/m3 based on a gas sample volume of 0,020 m3. All compounds present in the gas phase are volatile at the absorption and derivatization temperature and gaseous organosilicon species are trapped in absorbance media and derivatized into analytical silicon that is measured by this method. The concentration of the silicon is measured in diluted derivatization media using atomic emission spectrometry upon atomisation/ionisation in microwave or inductively coupled plasma. Unless specified otherwise, all volumes and concentrations refer to standard reference conditions (temperature, 273 K, and pressure, 101,325 kPa). NOTE When using appropriate dilution factors, the method can also be applied for silicon concentrations above 5 mg/m3.

  • Standard
    13 pages
    English language
    sale 15% off
  • Standard
    13 pages
    French language
    sale 15% off
  • Draft
    13 pages
    English language
    sale 15% off
  • Draft
    13 pages
    English language
    sale 15% off
  • Draft
    13 pages
    French language
    sale 15% off

This document gives means for ensuring that samples of natural gas and natural gas substitutes that
are conveyed into transmission and distribution grids are representative of the mass to which they are
allocated.
NOTE To ensure that a particular gas is taken into account in the standard, please see Annex A.
This document is applicable for sampling at sites and locations where interchangeability criteria, energy
content and network entry conditions are measured and monitored and is particularly relevant at cross
border and fiscal measurement stations. It serves as an important source for control applications in
natural gas processing and the measurement of trace components.
This document is applicable to natural dry gas (single phase - typically gas transiting through natural
gas pipelines) sampling only. On occasion a natural gas flow can have entrained liquid hydrocarbons.
Attempting to sample a wet natural gas flow introduces the possibility of extra unspecified uncertainties
in the resulting flow composition analysis. Sampling a wet gas (two or three phases) flow is outside the
scope of this document.
This document does not apply to the safety issues associated with gas sampling.

  • Standard
    80 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    78 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies methods to calculate (dynamic) viscosity, Joule-Thomson coefficient, isentropic exponent, and speed of sound, excluding density, for use in the metering of natural gas flow.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies general requirements for the determination of water in natural gas using the
Karl Fischer method (see Reference [1]).
ISO 10101-2 and ISO 10101-3 specify two individual methods of determination, a titration procedure
and a coulometric procedure, respectively.

  • Standard
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    9 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a coulometric procedure for the determination of water content by the Karl
Fischer method. The method is applicable to natural gas and other gases which do not react with Karl
Fischer (KF) reagents.
It applies to water concentrations between 5 mg/m3 and 5 000 mg/m3. Volumes are expressed at
temperature of 273,15 K (0 °C) and a pressure of 101,325 kPa (1 atm).

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a volumetric procedure for the determination of water content in natural gas.
Volumes are expressed in cubic metres at a temperature of 273,15 K (0 °C) and a pressure of 101,325 kPa
(1 atm). It applies to water concentrations between 5 mg/m3 and 5 000 mg/m3

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document gives means for ensuring that samples of natural gas and natural gas substitutes that are conveyed into transmission and distribution grids are representative of the mass to which they are allocated.
NOTE      To ensure that a particular gas is taken into account in the standard, please see Annex A.
This document is applicable for sampling at sites and locations where interchangeability criteria, energy content and network entry conditions are measured and monitored and is particularly relevant at cross border and fiscal measurement stations. It serves as an important source for control applications in natural gas processing and the measurement of trace components.
This document is applicable to natural dry gas (single phase - typically gas transiting through natural gas pipelines) sampling only. On occasion a natural gas flow can have entrained liquid hydrocarbons. Attempting to sample a wet natural gas flow introduces the possibility of extra unspecified uncertainties in the resulting flow composition analysis. Sampling a wet gas (two or three phases) flow is outside the scope of this document.
This document does not apply to the safety issues associated with gas sampling.

  • Standard
    80 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    78 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a coulometric procedure for the determination of water content by the Karl Fischer method. The method is applicable to natural gas and other gases which do not react with Karl Fischer (KF) reagents.
It applies to water concentrations between 5 mg/m3 and 5 000 mg/m3. Volumes are expressed at temperature of 273,15 K (0 °C) and a pressure of 101,325 kPa (1 atm).

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document gives means for ensuring that samples of natural gas and natural gas substitutes that are conveyed into transmission and distribution grids are representative of the mass to which they are allocated. NOTE To ensure that a particular gas is taken into account in the standard, please see Annex A. This document is applicable for sampling at sites and locations where interchangeability criteria, energy content and network entry conditions are measured and monitored and is particularly relevant at cross border and fiscal measurement stations. It serves as an important source for control applications in natural gas processing and the measurement of trace components. This document is applicable to natural dry gas (single phase - typically gas transiting through natural gas pipelines) sampling only. On occasion a natural gas flow can have entrained liquid hydrocarbons. Attempting to sample a wet natural gas flow introduces the possibility of extra unspecified uncertainties in the resulting flow composition analysis. Sampling a wet gas (two or three phases) flow is outside the scope of this document. This document does not apply to the safety issues associated with gas sampling.

  • Standard
    70 pages
    English language
    sale 15% off
  • Standard
    75 pages
    French language
    sale 15% off

This document specifies general requirements for the determination of water in natural gas using the Karl Fischer method (see Reference [1]).
ISO 10101-2 and ISO 10101-3 specify two individual methods of determination, a titration procedure and a coulometric procedure, respectively.

  • Standard
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    9 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document gives the specifications and guidelines for the methods to be used in the odorization of natural gas and other methane rich gases delivered through natural gas networks to gas applications under a safety point of view. This document also specifies the principles for the odorization technique (including handling and storage of odorants) and the control of odorization of natural gas and other methane rich gases. NOTE The general requirements for odorants, and the physical and chemical properties of commonly used odorants are specified in ISO 13734.

  • Technical specification
    12 pages
    English language
    sale 15% off
  • Technical specification
    13 pages
    French language
    sale 15% off
  • Draft
    12 pages
    English language
    sale 15% off
  • Draft
    12 pages
    English language
    sale 15% off

This document specifies a volumetric procedure for the determination of water content in natural gas. Volumes are expressed in cubic metres at a temperature of 273,15 K (0 °C) and a pressure of 101,325 kPa (1 atm). It applies to water concentrations between 5 mg/m3 and 5 000 mg/m3.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a coulometric procedure for the determination of water content by the Karl Fischer method. The method is applicable to natural gas and other gases which do not react with Karl Fischer (KF) reagents. It applies to water concentrations between 5 mg/m3 and 5 000 mg/m3. Volumes are expressed at temperature of 273,15 K (0 °C) and a pressure of 101,325 kPa (1 atm).

  • Standard
    9 pages
    English language
    sale 15% off

This document specifies requirements for LNG bunkering transfer systems and equipment used to
bunker LNG fuelled vessels, which are not covered by the IGC Code. This document is applicable to
vessels involved in international and domestic service regardless of size, and addresses the following
five elements:
a) hardware: liquid and vapour transfer systems;
b) operational procedures;
c) requirement for the LNG provider to provide an LNG bunker delivery note;
d) training and qualifications of personnel involved;
e) requirements for LNG facilities to meet applicable ISO standards and local codes.

  • Standard
    45 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies general requirements for the determination of water in natural gas using the Karl Fischer method (see Reference [1]). ISO 10101-2 and ISO 10101-3 specify two individual methods of determination, a titration procedure and a coulometric procedure, respectively.

  • Standard
    4 pages
    English language
    sale 15% off

This document specifies a volumetric procedure for the determination of water content in natural gas. Volumes are expressed in cubic metres at a temperature of 273,15 K (0 °C) and a pressure of 101,325 kPa (1 atm). It applies to water concentrations between 5 mg/m3 and 5 000 mg/m3.

  • Standard
    11 pages
    English language
    sale 15% off

This document specifies the determination of the concentration of alkanolamines in biomethane. The measurement method involves thermal desorption gas chromatography with flame ionization and/or mass spectrometry detectors (TD-GC-MS/FID). The described method is specifically developed for the analysis of five amine compounds, namely: — monoethanolamine (MEA); — diglycolamine (DGA); — diethanolamine (DEA); — N-methyldiethanolamine (MDEA); — piperazine (PZ). Information about the compounds is given in Annex A.

  • Technical specification
    9 pages
    English language
    sale 15% off
  • Technical specification
    9 pages
    French language
    sale 15% off
  • Draft
    9 pages
    English language
    sale 15% off
  • Draft
    9 pages
    English language
    sale 15% off

This document specifies methods to calculate (dynamic) viscosity, Joule-Thomson coefficient, isentropic
exponent, and speed of sound, excluding density, for use in the metering of natural gas flow.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a text file format - XML file format - for reporting natural gas analysis results and other data relevant to natural gas. The file name is applicable when it includes the extension of .XML (case insensitive). The XML file format is useful for output from ISO 6974-1[1] for composition and ISO 6974-2[2] for uncertainty, for input for ISO 6976[3] and for input for ISO 10723[4] for performance evaluation. Typically these would be the gas composition as provided on an analysis certificate, or results from a performance evaluation that would be read into an Excel spreadsheet for data processing.

  • Standard
    27 pages
    English language
    sale 15% off

This document specifies methods to calculate (dynamic) viscosity, Joule-Thomson coefficient, isentropic exponent, and speed of sound, excluding density, for use in the metering of natural gas flow.

  • Standard
    17 pages
    English language
    sale 15% off
  • Standard
    18 pages
    French language
    sale 15% off

This document surveys the quality designation of CBM all around the world, and analyses whether ISO/TC 193 standards for sampling, test and calculation methods are applicable to CBM.

  • Technical report
    20 pages
    English language
    sale 15% off
  • Draft
    20 pages
    English language
    sale 15% off

This document covers the design and manufacturing, installation and testing, operation and maintenance for vehicle fuelling appliances (VFAs) – the assemblies of the pressure equipment with limited technical parameters, intended for the non-commercial fuelling of natural gas vehicles (NGVs) with compressed natural gas (CNG).
This document is applicable to VFAs supplied with natural gas as defined in local applicable gas composition regulations or EN 16723-2, or with other gases meeting these requirements including biomethane, upgraded coal-bed methane (CBM) and gas from liquefied natural gas (LNG) vaporizer (on-site or off-site).
In case of combination of the certified VFA assembly with additional equipment, such as external storage and/or dispenser, EN ISO 16923 applies to the new assembly - the certified VFA assembly with added external equipment.
In case of combinations of interconnected VFA assemblies, EN ISO 16923 applies to the whole new assembly of the certified VFA assemblies.

  • Standard
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    33 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides requirements for the operation (“user manual”) of vehicles using CNG (fossil and renewable) as fuel, giving recommendations of good, safe and environmental friendly practices for users, including transit through specific areas (tunnels, ferries, etc.), refuelling, parking, and workshops, and also giving instructions in case of accident. This document also provides requirements concerning competence, knowledge and ability of workshops' operatives as well as any other matter concerned with safety.

  • Standard
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes a laser Raman spectroscopy method for the quantitative determination of chemical composition of natural gas in upstream area.

  • Standard
    17 pages
    English language
    sale 15% off

This document provides the means for energy determination of natural gas by measurement or by calculation, and describes the related techniques and measures that are necessary to take. The calculation of thermal energy is based on the separate measurement of the quantity, either by mass or by volume, of gas transferred and its measured or calculated calorific value. The general means of calculating uncertainties are also given.
Only systems currently in use are described.
NOTE       Use of such systems in commercial or official trade can require the approval of national authorization agencies, and compliance with legal regulations is required.
This document applies to any gas-measuring station from domestic to very large high-pressure transmission.
New techniques are not excluded, provided their proven performance is equivalent to, or better than, that of those techniques referred to in this document.
Gas-measuring systems are not the subject of this document.

  • Standard
    80 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    77 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes the precision that can be expected from the gas chromatographic method that is set up in accordance with ISO 6974-1. The stated precision provides values for the magnitude of variability that can be expected between test results when the method described in ISO 6974-1 is applied in one or more competent laboratories. This document also gives guidance on the assessment of bias.

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 20765-2:2015 specifies a method to calculate volumetric and caloric properties of natural gases, manufactured fuel gases, and similar mixtures, at conditions where the mixture may be in either the homogeneous (single-phase) gas state, the homogeneous liquid state, or the homogeneous supercritical (dense-fluid) state.

  • Standard
    68 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    65 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 23874:2006 describes the performance requirements for analysis of treated natural gas of transmission or pipeline quality in sufficient detail so that the hydrocarbon dewpoint temperature can be calculated using an appropriate equation of state. ISO 23874:2006 can be applied to gases that have maximum dewpoint temperatures (cricondentherms) between 0 °C and - 50 °C. The pressures at which these maximum dewpoint temperatures are calculated are in the range 2 MPa (20 bar) to 5 MPa (50 bar).
The procedure given in ISO 23874:2006 covers the measurement of hydrocarbons in the range C5 to C12. n-Pentane, which is quantitatively measured using ISO 6974 (all parts), is used as a bridge component and all C6 and higher hydrocarbons are measured relative to n-pentane. Major components are measured using ISO 6974 (all parts) and the ranges of components that can be measured are as defined in ISO 6974-1.

  • Standard
    33 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of ISO 20765 specifies a method of calculation for the volumetric and caloric properties of natural gases, natural gases containing synthetic admixture and similar mixtures, at conditions where the mixture can exist only as a gas.
The method is applicable to pipeline-quality gases within the ranges of pressure and temperature at which transmission and distribution operations normally take place. For volumetric properties (compression factor and density), the uncertainty of calculation is about ± 0,1 % (95 % confidence interval). For caloric properties (for example enthalpy, heat capacity, Joule-Thomson coefficient, speed of sound), the uncertainty of calculation is usually greater.

  • Standard
    50 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European standard specifies gas quality characteristics, parameters and their limits, for gases classified as group H that are to be transmitted, injected into and from storages, distributed and utilized.
NOTE   For information on gas families and gas groups see EN 437.
This European standard does not cover gases conveyed on isolated networks.
For biomethane, additional requirements indicated in prEN 16723 1 apply.

  • Standard
    48 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides the means for energy determination of natural gas by measurement or
by calculation, and describes the related techniques and measures that are necessary to take. The
calculation of thermal energy is based on the separate measurement of the quantity, either by mass
or by volume, of gas transferred and its measured or calculated calorific value. The general means of
calculating uncertainties are also given.
Only systems currently in use are described.
NOTE Use of such systems in commercial or official trade can require the approval of national authorization
agencies, and compliance with legal regulations is required.
This document applies to any gas-measuring station from domestic to very large high-pressure
transmission.
New techniques are not excluded, provided their proven performance is equivalent to, or better than,
that of those techniques referred to in this document.
Gas-measuring systems are not the subject of this document.

  • Standard
    80 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    77 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes the precision that can be expected from the gas chromatographic method
that is set up in accordance with ISO 6974-1. The stated precision provides values for the magnitude
of variability that can be expected between test results when the method described in ISO 6974-1 is
applied in one or more competent laboratories. This document also gives guidance on the assessment
of bias.

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides the means for energy determination of natural gas by measurement or by calculation, and describes the related techniques and measures that are necessary to take. The calculation of thermal energy is based on the separate measurement of the quantity, either by mass or by volume, of gas transferred and its measured or calculated calorific value. The general means of calculating uncertainties are also given. Only systems currently in use are described. NOTE Use of such systems in commercial or official trade can require the approval of national authorization agencies, and compliance with legal regulations is required. This document applies to any gas-measuring station from domestic to very large high-pressure transmission. New techniques are not excluded, provided their proven performance is equivalent to, or better than, that of those techniques referred to in this document. Gas-measuring systems are not the subject of this document.

  • Standard
    71 pages
    English language
    sale 15% off
  • Standard
    75 pages
    French language
    sale 15% off

This part of ISO 20765 specifies a method of calculation for the volumetric and caloric properties of natural gases, natural gases containing synthetic admixture and similar mixtures, at conditions where the mixture can exist only as a gas.
The method is applicable to pipeline-quality gases within the ranges of pressure and temperature at which transmission and distribution operations normally take place. For volumetric properties (compression factor and density), the uncertainty of calculation is about ± 0,1 % (95 % confidence interval). For caloric properties (for example enthalpy, heat capacity, Joule-Thomson coefficient, speed of sound), the uncertainty of calculation is usually greater.

  • Standard
    50 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 23874:2006 describes the performance requirements for analysis of treated natural gas of transmission or pipeline quality in sufficient detail so that the hydrocarbon dewpoint temperature can be calculated using an appropriate equation of state. ISO 23874:2006 can be applied to gases that have maximum dewpoint temperatures (cricondentherms) between 0 °C and - 50 °C. The pressures at which these maximum dewpoint temperatures are calculated are in the range 2 MPa (20 bar) to 5 MPa (50 bar).
The procedure given in ISO 23874:2006 covers the measurement of hydrocarbons in the range C5 to C12. n-Pentane, which is quantitatively measured using ISO 6974 (all parts), is used as a bridge component and all C6 and higher hydrocarbons are measured relative to n-pentane. Major components are measured using ISO 6974 (all parts) and the ranges of components that can be measured are as defined in ISO 6974-1.

  • Standard
    33 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 20765-2:2015 specifies a method to calculate volumetric and caloric properties of natural gases, manufactured fuel gases, and similar mixtures, at conditions where the mixture may be in either the homogeneous (single-phase) gas state, the homogeneous liquid state, or the homogeneous supercritical (dense-fluid) state.

  • Standard
    68 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    65 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European standard specifies gas quality characteristics, parameters and their limits, for gases classified as group H that are to be transmitted, injected into and from storages, distributed and utilized.
NOTE   For information on gas families and gas groups see EN 437.
This European standard does not cover gases conveyed on isolated networks.
For biomethane, additional requirements indicated in prEN 16723 1 apply.

  • Standard
    48 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document explains an approach for assessment of limit values for contaminants that may be found
in biomethane. Limit values are generally required as an adjunct to a biomethane specification (such as
parts 1 and 2 of EN 16723, or an equivalent National specification) or as part of a Network Entry
Agreement for injection of biomethane into gas networks.
The methodology employed will permit derivation of limit values based solely on consideration of
potential for impact on human health and does not consider other impacts, such as integrity and
operation of plant and pipelines used to convey biomethane or appliances involved in its combustion or
other regulations like CLP regulation. Where consideration of such impacts would result in proposing
lower limit values than those based on health impacts, then the lowest limit values should generally be
proposed.

  • Technical report
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for the determination of hydrogen sulfide content in working field natural gas of upstream area by laser absorption spectroscopy. The analytical range expressed as mole fraction is 10 × 10−6 to 20 %. The analytical range can be expanded to higher content with specific instrument requirements.

  • Standard
    16 pages
    English language
    sale 15% off
  • Standard
    16 pages
    French language
    sale 15% off

This document describes the precision that can be expected from the gas chromatographic method that is set up in accordance with ISO 6974-1. The stated precision provides values for the magnitude of variability that can be expected between test results when the method described in ISO 6974-1 is applied in one or more competent laboratories. This document also gives guidance on the assessment of bias.

  • Standard
    11 pages
    English language
    sale 15% off
  • Standard
    11 pages
    French language
    sale 15% off

ISO 20729:2017 applies to the determination of total sulfur content in natural gas expressed as sulfur mass concentration ranging from 1 mg/m3 to 200 mg/m3. Natural gas with sulfur contents above 200 mg/m3 can be analysed after dilution with a suitable sulfur-free solvent.

  • Standard
    10 pages
    English language
    sale 15% off
  • Standard
    10 pages
    French language
    sale 15% off

ISO 14469:2017 specifies CNG refuelling nozzles and receptacles constructed entirely of new and unused parts and materials, for road vehicles powered by compressed natural gas. A CNG refuelling connector consists of, as applicable, the receptacle and its protective cap (mounted on the vehicle) and the nozzle.
ISO 14469:2017 is applicable only to such devices designed for a service pressure of 20 MPa (200 bar) and 25 MPa (250 bar), to those using CNG according to ISO 15403‑1 and ISO 15403‑2 and having standardized mating components, and to connectors that prevent natural gas vehicles from being fuelled by dispensers with service pressures higher than that of the vehicle, while allowing them to be fuelled by dispensers with service pressures less than or equal to the vehicle fuel system service pressure.
ISO 14469:2017 refers to service pressures of 20 MPa and 25 MPa for:
- size 1: B200 and B250;
- size 2: C200 and C250.

  • Standard
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 14532:2014 establishes the terms, definitions, symbols, and abbreviations used in the field of natural gas.
The terms and definitions have been reviewed and studied in order to cover all aspects of any particular term with input from other sources such as European Standards from CEN (The European Committee for Standardization), national standards, and existing definitions in the IGU Dictionary of the Gas Industry.
The definitive intention of  ISO 14532:2014 is to incorporate the reviewed definitions into the ISO/TC 193 source standards.

  • Standard
    90 pages
    English and French language
    sale 10% off
    e-Library read for
    1 day

ISO 14532:2014 establishes the terms, definitions, symbols, and abbreviations used in the field of natural gas.
The terms and definitions have been reviewed and studied in order to cover all aspects of any particular term with input from other sources such as European Standards from CEN (The European Committee for Standardization), national standards, and existing definitions in the IGU Dictionary of the Gas Industry.
The definitive intention of ISO 14532:2014 is to incorporate the reviewed definitions into the ISO/TC 193 source standards.

  • Standard
    90 pages
    English and French language
    sale 10% off
    e-Library read for
    1 day