Hydraulic turbines, storage pumps and pump-turbines - Model acceptance tests (IEC 60193:2019)

This document applies to laboratory models of any type of impulse or reaction hydraulic turbine,
storage pump or pump-turbine.
This document applies to models of prototype machines either with unit power greater than
5 MW or with reference diameter greater than 3 m. Full application of the procedures herein
prescribed is not generally justified for machines with smaller power and size. Nevertheless,
this document may be used for such machines by agreement between the purchaser and the
supplier.
In this document, the term "turbine" includes a pump-turbine operating as a turbine and the
term "pump" includes a pump-turbine operating as a pump.
This document excludes all matters of purely commercial interest, except those inextricably
bound up with the conduct of the tests.
This document is concerned with neither the structural details of the machines nor the
mechanical properties of their components, so long as these do not affect model performance
or the relationship between model and prototype performances.
This document covers the arrangements for model acceptance tests to be performed on
hydraulic turbines, storage pumps and pump-turbines to determine if the main hydraulic
performance contract guarantees (see 4.2) have been satisfied.
It contains the rules governing test conduct and prescribes measures to be taken if any phase
of the tests is disputed.
The main objectives of this document are:
– to define the terms and quantities used;
– to specify methods of testing and of measuring the quantities involved, in order to ascertain
the hydraulic performance of the model;
– to specify the methods of computation of results and of comparison with guarantees;
– to determine if the contract guarantees that fall within the scope of this document have been
fulfilled;
– to define the extent, content and structure of the final report.
The guarantees can be given in one of the following ways:
– guarantees for prototype hydraulic performance, computed from model test results
considering scale effects;
– guarantees for model hydraulic performance.
Moreover, additional performance data (see 4.4) can be needed for the design or the operation
of the prototype of the hydraulic machine. Contrary to the requirements of Clauses 4 to 6 related
to main hydraulic performance, the information of these additional data given in Clause 7 is
considered only as recommendation or guidance to the user (see 7.1).
It is particularly recommended that model acceptance tests be performed if the expected field
conditions for acceptance tests (see IEC 60041:1991) would not allow the verification of
guarantees given for the prototype machine.
A transposition method taking into account the model and prototype wall surface roughness for
the performance conversion on pump-turbines, Francis turbines, and axial machines is
described in IEC 62097. This method requires model and prototype surface roughness data and
is takes into account the shift in nED, QED and PED factors for determining the transposition of
efficiency between model and prototype. However, in the case of Francis machines with semispiral
casing and axial machines, the transposition method has not been fully validated due to
a lack of data. In addition, IEC 62097 does not apply to storage pumps, Pelton turbines, and
Dériaz. Therefore, for these and otherwise specifically agreed upon cases where hydraulically
smooth flow conditions are assumed on the model and the prototype, the transposition formula
and procedure given in Annex D and Annex I can be applied. Applications and limitations of
both this document and IEC 62097 transposition methods are discussed in Annex E.
The method for performance conversion from model to prototype needs to be clearly defined in
the main hydraulic performance contract.

Hydraulische Turbinen, Speicherpumpen und Pumpturbinen - Modellabnahmeprüfungen (IEC 60193:2019)

Turbines hydrauliques, pompes d'accumulation et pompes-turbines - Essais de réception sur modèle (IEC 60193:2019)

Le présent document est applicable aux modèles de laboratoire de tout type de turbine hydraulique à action ou à réaction, de pompe d'accumulation ou de pompe-turbine.
Il s'applique aux modèles de machines prototypes ayant une puissance unitaire supérieure à 5 MW ou un diamètre de référence supérieur à 3 m. Bien que l'application intégrale des procédures prescrites ne soit généralement pas justifiée pour des machines de puissance et de dimension inférieures, le présent document peut néanmoins être utilisé pour de telles machines après accord entre l'acheteur et le fournisseur.
Dans ce document, le terme "turbine" inclut une pompe-turbine fonctionnant en turbine et le terme "pompe" inclut une pompe-turbine fonctionnant en pompe.
Ce document exclut tous les sujets à caractère purement commercial, excepté ceux intimement liés à la bonne conduite des essais.
Ce document ne concerne ni les détails de construction des machines, ni les propriétés mécaniques de leurs différentes parties pour autant que ces éléments n'affectent pas le fonctionnement du modèle ni la relation entre les performances du modèle et celles du prototype.
Le présent document régit les modalités des essais de réception sur modèle des turbines hydrauliques, pompes d'accumulation et pompes-turbines en vue de déterminer si les garanties contractuelles de performances hydrauliques principales (voir 4.2) sont respectées.
Il fixe les règles qui gouvernent la conduite de ces essais et prescrit les mesures à prendre en cas de contestation d'une phase quelconque des essais.
Les objectifs principaux du présent document sont:
- de définir les termes et les grandeurs utilisés;
- de prescrire les méthodes d'essai et les façons de mesurer les grandeurs permettant d'évaluer les performances hydrauliques du modèle;
- de prescrire les méthodes de calcul des résultats et de comparaison aux garanties;
- de déterminer si les garanties contractuelles qui sont du domaine de ce document sont respectées;
- de définir l'étendue, le contenu et la présentation du rapport final.
Les garanties peuvent être données de l'une des façons suivantes:
- garanties reposant sur les performances hydrauliques du prototype, calculées à partir des résultats d'essai du modèle en tenant compte des effets d'échelle;
- garanties reposant sur les performances hydrauliques du modèle.
Par ailleurs des données complémentaires de fonctionnement (voir 4.4) peuvent être nécessaires pour la conception ou l'exploitation de la machine hydraulique prototype. Contrairement aux exigences indiquées aux Articles 4 à 6 relatives aux performances hydrauliques principales, les informations sur ces données complémentaires décrites à l'Article 7 ne sont considérées que comme des recommandations ou des conseils à l'utilisateur (voir 7.1).
Il est particulièrement recommandé d'effectuer les essais de réception sur modèle lorsque les conditions pratiques dans lesquelles seraient faits des essais de réception sur le site (voir l'IEC 60041) ne permettraient pas de prouver le respect des garanties données pour le prototype.
Une méthode de transposition tenant compte de la rugosité des surfaces entre le modèle et le prototype pour les pompes-turbines, les turbines Francis et les turbines axiales est décrite dans l'IEC 62097. Cette méthode requiert les valeurs de rugosité des surfaces modèle et prototype, respectivement et tient compte du décalage en nED, QED et PED afin de calculer la transposition entre le modèle et le prototype. Par contre, cette nouvelle méthode de calcul de transposition n'a pas été complètement validée en raison d'un manque de données pour les turbines Francis avec bâche fronto-spirale et les turbines axiales. De plus, l'IEC 62097 ne s'applique pas aux pompes d'accumulation, aux turbines Pelton et Dériaz.

Vodne turbine, akumulacijske črpalke in črpalne turbine - Prevzemni preskusi modela (IEC 60193:2019)

Ta dokument se uporablja za laboratorijske modele vseh vrst impulznih ali reaktivnih vodnih turbin, akumulacijskih črpalk in črpalnih turbin.
Ta dokument se uporablja za modele prototipnih strojev z močjo enote, večjo od 5 MW, ali referenčnim premerom, večjim od 3 m. Celotna uporaba postopkov, ki je opisana v tem dokumentu, na splošno ni utemeljena za stroje manjše moči in velikosti. Kljub temu se lahko ta dokument uporablja za take stroje po dogovoru med kupcem in dobaviteljem.
V tem dokumentu izraz »turbina« vključuje črpalno turbino, ki deluje kot turbina, izraz »črpalka« pa vključuje črpalno turbino, ki deluje kot črpalka.
Ta dokument izključuje vse izključno komercialne interese, razen tistih, ki so neločljivo povezani z izvajanjem teh preskusov.
Ta dokument ne opredeljuje strukturnih podrobnosti strojev niti mehanskih lastnosti njihovih komponent, če te ne vplivajo na zmogljivost modela ali na razmerje med zmogljivostjo modela in prototipa.
Ta dokument zajema dogovore za prevzemne preskuse modela, ki bodo opravljeni na vodnih turbinah, akumulacijskih črpalkah in črpalnih turbinah, da se ugotovi, ali so izpolnjena pogodbena jamstva glede hidravlične zmogljivosti (glej točko 4.2).
Vsebuje pravila, ki urejajo izvajanje preskusov in predpisujejo ukrepe, ki jih je treba izvesti v primeru sporov glede ene od faz preskusov.
Glavni namen tega dokumenta je:
– definirati uporabljane izraze in količine;
– določiti metode za preskušanje in merjenje vključenih količin, da se opredeli hidravlična zmogljivost modela;
– določiti metode za izračun rezultatov in primerjavo z jamstvi;
– določiti, ali so pogodbena jamstva, ki spadajo na področje uporabe tega dokumenta, izpolnjena;
– določiti obseg, vsebino in strukturo končnega poročila.
Ta jamstva je mogoče podati na enega od naslednjih načinov:
– jamstva za hidravlično zmogljivost prototipa, izračunano na podlagi rezultatov preskusa modela ob upoštevanju učinkov obsega;
– jamstva za hidravlično zmogljivost modela.
Poleg tega so lahko za zasnovo ali obratovanje prototipa vodnega stroja potrebni dodatni podatki o zmogljivosti (glej točko 4.4). V nasprotju z zahtevami iz točk od 4 do 6 v zvezi z glavno hidravlično zmogljivostjo se informacije teh dodatnih podatkov iz točke 7 obravnavajo zgolj kot priporočilo ali vodilo za uporabnika (glej točko 7.1).
Zlasti se priporoča, da se prevzemni preskusi modela opravijo, če pričakovani terenski pogoji za prevzemne preskuse (glej standard IEC 60041:1991) ne omogočajo preverjanja jamstev, ki so navedena za prototipni stroj.
Metoda prenosa, ki za pretvorbo zmogljivosti črpalnih turbin, Francisovih turbin in aksialnih strojev upošteva površinsko hrapavost modela in prototipa, je opisana v standardu IEC 62097. Za to metodo so potrebni podatki o površinski hrapavosti modela in prototipa, pri čemer se upoštevajo spremembe faktorjev nED, QED ter PED za določanje prenosa učinkovitosti med modelom in prototipom. Vendar pa pri Francisovih strojih s polspiralastim ohišjem in aksialnih strojih metoda prenosa ni v celoti preverjena zaradi pomanjkanja podatkov. Poleg tega se standard IEC 62097 ne uporablja za akumulacijske črpalke, Peltonove turbine in Dériaz. Tako je mogoče za te in druge posebej dogovorjene primere, pri katerih so pogoji hidravlično nemotenega pretoka predpostavljeni glede na model in prototip, uporabiti formulo ter postopek prenosa, ki sta navedena v dodatku D in dodatku I. Načini uporabe in omejitve metod prenosa iz tega dokumenta in standarda IEC 62097 so obravnavane v dodatku E. Metodo za pretvorbo zmogljivosti modela v zmogljivost prototipa je treba jasno opredeliti v glavni pogodbi o hidravlični zmogljivosti.

General Information

Status
Published
Publication Date
11-Aug-2019
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
02-Jul-2019
Due Date
06-Sep-2019
Completion Date
12-Aug-2019

Relations

Buy Standard

Standard
EN IEC 60193:2019
English language
314 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)

SLOVENSKI STANDARD
SIST EN IEC 60193:2019
01-september-2019
Nadomešča:
SIST EN 60193:2001
Vodne turbine, akumulacijske črpalke in črpalne turbine - Prevzemni preskusi
modela (IEC 60193:2019)
Hydraulic turbines, storage pumps and pump-turbines - Model acceptance tests (IEC
60193:2019)
Hydraulische Turbinen, Speicherpumpen und Pumpturbinen - Modellabnahmeprüfungen
(IEC 60193:2019)
Turbines hydrauliques, pompes d'accumulation et pompes-turbines - Essais de réception
sur modèle (IEC 60193:2019)
Ta slovenski standard je istoveten z: EN IEC 60193:2019
ICS:
27.140 Vodna energija Hydraulic energy engineering
SIST EN IEC 60193:2019 en
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------

SIST EN IEC 60193:2019

---------------------- Page: 2 ----------------------

SIST EN IEC 60193:2019


EUROPEAN STANDARD EN IEC 60193

NORME EUROPÉENNE

EUROPÄISCHE NORM
June 2019
ICS 27.140 Supersedes EN 60193:1999
English Version
Hydraulic turbines, storage pumps and pump-turbines - Model
acceptance tests
(IEC 60193:2019)
Turbines hydrauliques, pompes d'accumulation et pompes- Hydraulische Turbinen, Speicherpumpen und Pumpturbinen
turbines - Essais de réception sur modèle - Modellabnahmeprüfungen
(IEC 60193:2019) (IEC 60193:2019)
This European Standard was approved by CENELEC on 2019-05-30. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.
CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the
Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and the United Kingdom.


European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2019 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.
 Ref. No. EN IEC 60193 E

---------------------- Page: 3 ----------------------

SIST EN IEC 60193:2019
EN IEC 60193 (E)
European foreword
The text of document 4/371/FDIS, future edition 3 of IEC 60193, prepared by IEC/TC 4 "Hydraulic
turbines" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as
EN IEC 60193.
The following dates are fixed:
• latest date by which the document has to be implemented at national (dop) 2020-02-29
level by publication of an identical national standard or by endorsement
• latest date by which the national standards conflicting with the (dow) 2022-05-30
document have to be withdrawn

This document supersedes EN 60193:1999.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Endorsement notice
The text of the International Standard IEC 60193:2019 was approved by CENELEC as a European
Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards
indicated:
IEC 60041:1991 NOTE Harmonized as EN 60041:1994
IEC 60609-1:2004 NOTE Harmonized as EN 60609-1:2005 (not modified)
IEC 60609-2:1997 NOTE Harmonized as EN 60609-2:1999 (not modified)
IEC 60994:1991 NOTE Harmonized as EN 60994:1992 (not modified)
ISO 4006:1991 NOTE Harmonized as EN 24006:1993 (not modified)
ISO 4373:2008 NOTE Harmonized as EN ISO 4373:2008 (not modified)
ISO 5167-1:2003 NOTE Harmonized as EN ISO 5167-1:2003 (not modified)
1
ISO 20456:2017 NOTE Harmonized as EN ISO 20456 (not modified)

1
Under preparation. Stage at the time of publication: prEN ISO 20456.
2

---------------------- Page: 4 ----------------------

SIST EN IEC 60193:2019
EN IEC 60193:2019 (E)
Annex ZA
(normative)

Normative references to international publications
with their corresponding European publications
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.
NOTE 1  Where an International Publication has been modified by common modifications, indicated by (mod), the relevant
EN/HD applies.
NOTE 2  Up-to-date information on the latest versions of the European Standards listed in this annex is available here:
www.cenelec.eu.

Publication Year Title EN/HD Year
IEC 62097 2009 Hydraulic machines, radial and axial - Performance EN 62097 2009
conversion method from model to prototype
ISO 2186 2007 Fluid flow in closed conduits - Connections for - -
pressure signal transmissions between primary and
secondary elements
ISO 2533 1975 Standard Atmosphere - -
ISO 4185 -  Measurement of liquid flow in closed conduits - EN 24185 1993
Weighing method
- -   + AC 1993
ISO 4287 1997 Geometrical Product Specifications (GPS) - Surface EN ISO 4287 1998
texture: Profile method - Terms, definitions and
surface texture parameters
ISO 8316 -  Measurement of liquid flow in closed conduits - EN ISO 8316 1995
Method by collection of the liquid in a volumetric tank

3

---------------------- Page: 5 ----------------------

SIST EN IEC 60193:2019

---------------------- Page: 6 ----------------------

SIST EN IEC 60193:2019



IEC 60193

®


Edition 3.0 2019-04




INTERNATIONAL



STANDARD




NORME



INTERNATIONALE











Hydraulic turbines, storage pumps and pump-turbines –

Model acceptance tests




Turbines hydrauliques, pompes d'accumulation et pompes-turbines –

Essais de réception sur modèle
















INTERNATIONAL

ELECTROTECHNICAL

COMMISSION


COMMISSION

ELECTROTECHNIQUE


INTERNATIONALE




ICS 27.140 ISBN 978-2-8322-6659-5




Warning! Make sure that you obtained this publication from an authorized distributor.

Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

® Registered trademark of the International Electrotechnical Commission
Marque déposée de la Commission Electrotechnique Internationale

---------------------- Page: 7 ----------------------

SIST EN IEC 60193:2019
– 2 – IEC 60193:2019 © IEC 2019
CONTENTS
FOREWORD . 13
1 Scope . 15
2 Normative references . 17
3 Terms, definitions, symbols and units . 18
3.1 General . 18
3.2 General terminology . 18
3.3 Units . 20
3.4 Definition of terms, symbols and units . 20
3.4.1 List of terms and definitions by topic . 20
3.4.2 Subscripts and symbols . 21
3.4.3 Geometric terms . 23
3.4.4 Physical quantities and properties . 25
3.4.5 Discharge, velocity and speed terms . 26
3.4.6 Pressure terms . 27
3.4.7 Specific energy terms . 27
3.4.8 Height and head terms . 30
3.4.9 Power and torque terms . 32
3.4.10 Efficiency terms . 34
3.4.11 General terms relating to fluctuating quantities . 35
a)
3.4.12 Fluid dynamics and scaling terms . 37
3.4.13 Dimensionless terms . 38
3.4.14 Terms relating to additional performance data . 39
4 Nature and extent of guarantees related to hydraulic performance . 40
4.1 General . 40
4.1.1 Design data and coordination . 40
4.1.2 Definition of the hydraulic performance guarantees . 40
4.1.3 Guarantees of correlated quantities . 41
4.1.4 Form of guarantees . 41
4.2 Main hydraulic performance guarantees verifiable by model test . 41
4.2.1 Guaranteed quantities for any machine . 41
4.2.2 Specific application . 42
4.3 Guarantees not verifiable by model test . 43
4.3.1 Guarantees on cavitation erosion . 43
4.3.2 Guarantees on maximum momentary overspeed and maximum
momentary pressure rise . 44
4.3.3 Guarantees covering noise and vibration . 44
4.4 Additional performance data . 44
5 Execution of tests . 45
5.1 Requirements of test installation and model . 45
5.1.1 Choice of laboratory . 45
5.1.2 Test installation . 45
5.1.3 Model requirements . 46
5.2 Dimensional check of model and prototype . 49
5.2.1 General . 49
5.2.2 Explanation of terms used for model and prototype. 49
5.2.3 Purpose of dimensional checks. 49
5.2.4 General rules . 50

---------------------- Page: 8 ----------------------

SIST EN IEC 60193:2019
IEC 60193:2019 © IEC 2019 – 3 –
5.2.5 Procedure . 51
5.2.6 Application for different types of machines . 52
5.2.7 Methods . 52
5.2.8 Accuracy of measurements . 61
5.2.9 Dimensions of model and prototype to be checked . 62
5.2.10 Permissible maximum deviations in geometrical similarity between
prototype and model for turbines, pumps and pump-turbines . 66
5.2.11 Surface waviness and roughness . 71
5.3 Hydraulic similitude . 74
5.3.1 Theoretical basic requirements and similitude numbers . 74
5.3.2 Conditions for hydraulic similitude as used in this document . 74
5.3.3 Similitude requirements for various types of model tests . 75
5.3.4 Reynolds similitude . 76
5.3.5 Froude similitude . 77
5.3.6 Other similitude conditions . 80
5.4 Test conditions . 81
5.4.1 Determination of test conditions . 81
5.4.2 Minimum values for model size and test conditions to be fulfilled . 82
5.4.3 Stability and fluctuations during measurements . 83
5.4.4 Adjustment of the operating point . 83
5.5 Test procedures . 83
5.5.1 Organization of tests. 83
5.5.2 Inspections and calibrations . 86
5.5.3 Execution of tests . 88
5.5.4 Faults and repetition of tests . 93
5.5.5 Final test report . 94
5.6 Introduction to the methods of measurement . 95
5.6.1 General . 95
5.6.2 Measurements related to the main hydraulic performance guarantees . 95
5.6.3 Measurements related to additional data . 97
5.6.4 Acquisition and processing of data . 97
5.7 Physical properties . 97
5.7.1 General . 97
5.7.2 Acceleration due to gravity . 97
5.7.3 Physical properties of water . 98
5.7.4 Physical conditions of atmosphere . 104
5.7.5 Density of mercury . 104
6 Main hydraulic performances: methods of measurement and results . 105
6.1 Data acquisition and data processing . 105
6.1.1 Overview . 105
6.1.2 General requirements . 105
6.1.3 Data acquisition . 105
6.1.4 Component requirements . 107
6.1.5 Check of the data acquisition system . 110
6.2 Discharge measurement . 112
6.2.1 General . 112
6.2.2 Choice of the method of measurement . 112
6.2.3 Accuracy of measurement . 113
6.2.4 Primary methods . 114

---------------------- Page: 9 ----------------------

SIST EN IEC 60193:2019
– 4 – IEC 60193:2019 © IEC 2019
6.2.5 Secondary methods . 115
6.3 Pressure measurement . 118
6.3.1 General . 118
6.3.2 Choice of pressure-measuring section . 119
6.3.3 Pressure taps and connecting lines . 119
6.3.4 Apparatus for pressure measurement . 121
6.3.5 Calibration of pressure measurement apparatus . 128
6.3.6 Vacuum measurements . 129
6.3.7 Uncertainty in pressure measurements . 129
6.4 Free water level measurement (see also ISO 4373) . 129
6.4.1 General . 129
6.4.2 Choice of water level measuring sections . 130
6.4.3 Number of measuring points in a measuring section . 130
6.4.4 Measuring methods . 130
6.4.5 Uncertainty in free water level measurement . 131
6.5 Determination of E and NPSE . 132
6.5.1 General . 132
6.5.2 Determination of the specific hydraulic energy E . 133
6.5.3 Simplified formulae for E . 135
6.5.4 Determination of the net positive suction-specific energy NPSE . 142
6.6 Shaft torque measurement . 144
6.6.1 General . 144
6.6.2 Methods of torque measurement . 144
6.6.3 Methods of absorbing/generating power . 145
6.6.4 Layout of arrangement . 145
6.6.5 Checking of system . 150
6.6.6 Calibration . 150
6.6.7 Uncertainty in torque measurement (at a confidence level of 95 %) . 151
6.7 Rotational speed measurement . 152
6.7.1 General . 152
6.7.2 Methods of speed measurement . 152
6.7.3 Checking . 152
6.7.4 Uncertainty of measurement . 152
6.8 Computation and presentation of test results . 153
6.8.1 General . 153
6.8.2 Power, discharge and efficiency in the guarantee range . 158
6.8.3 Computation of steady-state runaway speed and discharge . 171
6.9 Error analysis . 176
6.9.1 Definitions . 176
6.9.2 Determination of uncertainties in model tests . 178
6.10 Comparison with guarantees . 182
6.10.1 General . 182
6.10.2 Interpolation curve and total uncertainty bandwidth . 183
6.10.3 Power, discharge and/or specific hydraulic energy and efficiency in the
guarantee range . 184
6.10.4 Runaway speed and discharge . 188
6.10.5 Cavitation guarantees . 189
7 Additional performance data – Methods of measurement and results . 191
7.1 Introduction to additional data measurement . 191

---------------------- Page: 10 ----------------------

SIST EN IEC 60193:2019
IEC 60193:2019 © IEC 2019 – 5 –
7.1.1 General . 191
7.1.2 Test conditions and test procedures . 192
7.1.3 Uncertainty in measurements . 192
7.1.4 Model to prototype conversion . 192
7.2 Fluctuating quantities . 193
7.2.1 Data acquisition and processing for measurement of fluctuating
quantities . 193
7.2.2 Pressure fluctuations . 197
7.2.3 Shaft torque fluctuations . 213
7.3 Axial and radial thrust . 214
7.3.1 General . 214
7.3.2 Hydraulic axial thrust . 215
7.3.3 Radial thrust . 223
7.4 Hydraulic loads on control components . 226
7.4.1 General . 226
7.4.2 Guide vane torque . 227
7.4.3 Runner blade torque . 233
7.4.4 Pelton needle force and deflector torque . 237
7.5 Testing in an extended operating range . 241
7.5.1 General . 241
7.5.2 Four quadrants . 241
7.5.3 Operating modes (see Figure 116) . 243
7.5.4 Scope of tests . 244
7.5.5 Methods of testing in the extended operating range . 246
7.6 Differential pressure measurement in view of prototype index test . 248
7.6.1 General . 248
7.6.2 Purpose of test . 249
7.6.3 Execution of test . 249
7.6.4 Analysis of test results . 249
7.6.5 Transposition to prototype conditions . 250
7.6.6 Uncertainty . 250
Annex A (informative) Dimensionless terms . 251
Annex B (normative) Physical properties, data . 253
Annex C (informative) Summarized test and calculation procedure . 261
C.1 General . 261
C.2 Agreements to be reached prior to testing . 261
C.3 Model, test facility and instrumentation . 262
C.3.1 Model manufacture and dimensional checks . 262
C.3.2 Test facility instrumentation and data acquisition system . 262
C.4 Tests and calculation of the model values . 262
C.4.1 Test types. 262
C.4.2 Measurement of the main quantities during the test . 263
C.4.3 Uncertainty of the measured quantities . 263
C.4.4 Calculation of the quantities related to the main hydraulic performance . 263
C.4.5 Calculation of the dimensionless factors or coefficients and of the
Thoma number . 263
C.4.6 Determination of δ for the transposition of efficiency . 264
ref
C.4.7 Calculation of efficiency and power coefficients referred to Re . 264
M*

---------------------- Page: 11 ----------------------

SIST EN IEC 60193:2019
– 6 – IEC 60193:2019 © IEC 2019
C.4.8 Correction of the model-measured values taking into account the
influence of cavitation . 264
C.5 Calculation of prototype quantities . 264
C.6 Plotting of model or prototype results . 264
C.7 Comparison with the g
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.