Pulps -- Determination of limiting viscosity number in cupri-ethylenediamine (CED) solution

This International Standard specifies a method which yields a number that is an estimate of the limiting viscosity number of pulp in a dilute cupri-ethylenediamine (CED) solution. This International Standard is primarily applicable to CED-soluble samples of bleached chemical pulps, but can also be applied to any kind of pulp that dissolves completely in CED solution.
NOTE 1 The results can be used to estimate the extent of cellulose degradation caused by cooking or bleaching.
Results obtained with samples containing appreciable amounts of substances other than cellulose must be interpreted with caution, however.
NOTE 2 In the strictest sense, viscosity measurement procedures are applicable only to the polysaccharide fraction of the sample. This notwithstanding, viscosity measurement can usually be used to obtain a result on unbleached pulps having lignin contents of up to 4 %, because most of these pulps can be successfully dissolved in CED. However, the simple fact that an unbleached pulp can be dissolved in CED does not mean that the results are valid. In summary, viscosity results for pulps containing more than 0,5 % of lignin are not acceptable for technical specification purposes.

Pâtes -- Détermination de l'indice de viscosité limite à l'aide d'une solution de cupri-éthylènediamine (CED)

L'ISO 5351:2010 sp�cifie une m�thode permettant de d�terminer un nombre qui est une estimation de l'indice de viscosit� limite d'une p�te dans une solution dilu�e de cupri-�thyl�nediamine (CED).
L'ISO 5351:2010 est essentiellement applicable � des �chantillons de p�tes chimiques blanchies solubles dans la CED, mais peut aussi �tre appliqu�e � tout type de p�te se dissolvant totalement dans une solution de CED.

Vlaknine - Določanje mejne viskoznosti v raztopini bakrovega-etilen-diamina (CED)

Ta mednarodni standard opredeljuje metodo, s katero dobimo število, ki je ocena mejne viskoznosti vlaknine v razredčeni raztopini bakrovega-etilen-diamina (CED).
Ta mednarnodni standard se predvsem uporablja za vzorce beljenih kemičnih vlaknin, topnih v CED, a uporablja se lahko tudi za katero koli vrsto vlaknin, ki se popolnoma raztopijo v raztopini CED.
OPOMBA 1: Rezultati se lahko uporabijo za oceno obsega razgradnje celuloze, ki jo povzroči kuhanje ali beljenje.
Vendar je treba rezultate, pridobljene z vzorci, ki vsebujejo precejšnje količine snovi, ki niso celuloza, razlagati previdno.
OPOMBA 2: V najožjem pomenu so postopki merjenja viskoznosti uporabni le za polisaharidno frakcijo vzorca. Ne glede na to je merjenje viskoznosti običajno mogoče uporabiti za pridobivanje rezultatov o nebeljenih vlakninah z vsebnostjo lignina do 4 %, ker je večino teh vlaknin mogoče uspešno raztopiti v CED. Vendar preprosto dejstvo, da se nebeljene vlaknine lahko raztopijo v CED, ne pomeni, da so rezultati veljavni. Če povzamemo, rezultati viskoznosti za vlaknine, ki vsebujejo več kot 0,5 % lignina, niso sprejemljivi za tehnične namene specifikacije.

General Information

Status
Published
Public Enquiry End Date
29-Mar-2011
Publication Date
13-Apr-2011
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
07-Apr-2011
Due Date
12-Jun-2011
Completion Date
14-Apr-2011

Relations

Buy Standard

Standard
ISO 5351:2010 - Pulps -- Determination of limiting viscosity number in cupri-ethylenediamine (CED) solution
English language
19 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 5351:2011
English language
24 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard
ISO 5351:2010 - Pâtes -- Détermination de l'indice de viscosité limite a l'aide d'une solution de cupri-éthylenediamine (CED)
French language
20 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)

INTERNATIONAL ISO
STANDARD 5351
Second edition
2010-02-15


Pulps — Determination of limiting
viscosity number in cupri-
ethylenediamine (CED) solution
Pâtes — Détermination de l'indice de viscosité limite à l'aide d'une
solution de cupri-éthylènediamine (CED)





Reference number
ISO 5351:2010(E)
©
ISO 2010

---------------------- Page: 1 ----------------------
ISO 5351:2010(E)
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.


COPYRIGHT PROTECTED DOCUMENT


©  ISO 2010
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland

ii © ISO 2010 – All rights reserved

---------------------- Page: 2 ----------------------
ISO 5351:2010(E)
Contents Page
Foreword .iv
Introduction.v
1 Scope.1
2 Normative references.1
3 Terms and definitions .1
4 Principle.2
5 Reagents and materials .3
6 Apparatus and materials.3
7 Calibration of viscometers .5
8 Sampling and preparation of sample .6
9 Procedure.6
9.1 Choice of mass concentration of solution.6
9.2 Weighing of test portion .7
9.3 Preparation of test solution.7
9.4 Determination of efflux time.7
10 Calculation .7
10.1 Viscosity ratio .7
10.2 Limiting viscosity number.8
10.3 Expression of results.8
11 Precision.8
11.1 General check using reference pulp .8
11.2 Repeatability .8
11.3 Reproducibility .9
12 Test report.9
Annex A (normative) Preparation and analysis of the cupri-ethylenediamine (CED) solution .10
Annex B (normative) Values of [η] × ρ corresponding to different values of the viscosity ratio
η (η/η ).15
ratio 0
Annex C (informative) Calculation of degree of polymerization .18
Bibliography.19

© ISO 2010 – All rights reserved iii

---------------------- Page: 3 ----------------------
ISO 5351:2010(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 5351 was prepared by Technical Committee ISO/TC 6, Paper, board and pulps, Subcommittee SC 5,
Test methods and quality specifications for pulps.
This second edition cancels and replaces the first edition (ISO 5351:2004), Subclause 6.1.1, Clauses 8 and 9
and Annex A of which have been technically revised.
iv © ISO 2010 – All rights reserved

---------------------- Page: 4 ----------------------
ISO 5351:2010(E)
Introduction
The viscosity (or dynamic viscosity), symbol η, of a fluid is defined by the Newtonian equation

τη= γ (1)
where
τ is the shear stress;
η is the viscosity;

γ is the velocity gradient dv/dz (v being the velocity of one plane relative to the other, and z the co-
ordinate perpendicular to the two planes).
In non-Newtonian behaviour, which is normally the case with polymer solutions of high molecular mass such
as cellulose, the ratio of the shear stress to the velocity gradient varies with the shear stress.
The data required for evaluation of the limiting viscosity number of pulp in dilute solutions are derived by
means of a capillary-tube viscometer (for terms and definitions, see Clause 3). The results of these
measurements are seriously affected by the shear rate.
The mass concentration ρ of the pulp is therefore chosen so that, if multiplied by the limiting viscosity number
[η], it gives a product [η] × ρ equal to 3,0 ± 0,4, corresponding to a viscosity ratio η /η equal to 6 to 10. The
0
−1
determination is then carried out at a reproducible shear rate G of (200 ± 30) s ; this involves the
employment of two viscometers, one for the calibration and one for the measurement of the viscosity of the
pulp.
The viscosity of a pulp in cupri-ethylenediamine (CED) solution gives an indication of the average degree of
polymerization (DP) of the cellulose (see Annex C). Such a measurement therefore gives a relative indication
of the degree of degradation (decrease in cellulose molecular mass) resulting from the pulping and/or
bleaching process.
Care must be taken in drawing conclusions regarding the strength properties of the pulp strictly from viscosity
measurement, unless previous investigation has identified the relationship. A direct relationship between pulp
strength and viscosity has not been found.

© ISO 2010 – All rights reserved v

---------------------- Page: 5 ----------------------
INTERNATIONAL STANDARD ISO 5351:2010(E)

Pulps — Determination of limiting viscosity number in cupri-
ethylenediamine (CED) solution
1 Scope
This International Standard specifies a method which yields a number that is an estimate of the limiting
viscosity number of pulp in a dilute cupri-ethylenediamine (CED) solution.
This International Standard is primarily applicable to CED-soluble samples of bleached chemical pulps, but
can also be applied to any kind of pulp that dissolves completely in CED solution.
NOTE 1 The results can be used to estimate the extent of cellulose degradation caused by cooking or bleaching.
Results obtained with samples containing appreciable amounts of substances other than cellulose must be interpreted
with caution, however.
NOTE 2 In the strictest sense, viscosity measurement procedures are applicable only to the polysaccharide fraction of
the sample. This notwithstanding, viscosity measurement can usually be used to obtain a result on unbleached pulps
having lignin contents of up to 4 %, because most of these pulps can be successfully dissolved in CED. However, the
simple fact that an unbleached pulp can be dissolved in CED does not mean that the results are valid. In summary,
viscosity results for pulps containing more than 0,5 % of lignin are not acceptable for technical specification purposes.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 638, Paper, board and pulps — Determination of dry matter content — Oven-drying method
ISO 7213, Pulps — Sampling for testing
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1
shear rate
G
velocity gradient of a fluid layer, parallel to the direction of flow, at the periphery of the capillary, defined by the
equation
4V
G = (2)
3
πrt
f
where
V is the volume between two arbitrary calibration marks on the viscometer, in millilitres;
r is the radius of the capillary tube, in centimetres;
t is the efflux time of the fluid, in seconds.
f
© ISO 2010 – All rights reserved 1

---------------------- Page: 6 ----------------------
ISO 5351:2010(E)
3.2
viscosity ratio
relative viscosity (deprecated)
η
ratio
ratio of the viscosities η and η of the polymer solution of stated concentration and of the solvent, respectively,
0
at the same temperature
η
η = (3)
ratio
η
0
NOTE Viscosity ratio is dimensionless.
3.3
viscosity relative increment
viscosity ratio (3.2) minus one
η − η
η
0
−=1 (4)
ηη
00
NOTE Viscosity relative increment is dimensionless.
3.4
viscosity number
VN
ratio of the viscosity relative increment (3.3) to the mass concentration of polymer ρ, expressed in grams
per millilitre, in the solution
η − η
0
(5)
ηρ×
0
NOTE Viscosity number is measured in millilitres per gram.
3.5
limiting viscosity number
[η]
limiting value of the viscosity number (3.4) at infinite dilution
⎛⎞ηη−
0
⎡⎤η = lim (6)
⎜⎟
⎣⎦
ρ→0ηρ×
⎝⎠0
NOTE 1 Limiting viscosity number is measured in millilitres per gram.
NOTE 2 In the literature, the term intrinsic viscosity is often used and is equal to the limiting viscosity number. There is
no general conversion factor between the limiting viscosity number in ml/g and other viscosities, determined by other
methods and expressed in millipascal seconds (mPa⋅s) (see [7] in the Bibliography).
4 Principle
Measurement of the times of efflux of the diluted solvent and the pulp solution through a capillary-tube
viscometer at a specified mass concentration at 25 °C. Calculation by Martin’s formula (see [9] in the
Bibliography) of the limiting viscosity number from these measurements, and from the known mass
concentration of the solution.
2 © ISO 2010 – All rights reserved

---------------------- Page: 7 ----------------------
ISO 5351:2010(E)
5 Reagents and materials
Use only chemicals of recognized analytical grade and only distilled or deionized water.
5.1 Cupri-ethylenediamine (CED) solution, c(CED) = (1,00 ± 0,02) mol/l, saturated with copper(ll)
hydroxide, for convenience referred to as CED solution.
The solution contains 1,0 mol/l of copper, and 2,0 mol/l of ethylenediamine. It is commercially available, or
may be prepared and analysed as described in Annex A.
WARNING — Because of the presence of allergens, avoid contact of the skin with CED and
ethylenediamine solutions. Ethylenediamine is volatile and repeated exposure may lead to severe
respiratory allergic reactions with subsequent sensitization. Cupri-ethylenediamine solutions should
not be pipetted by mouth. CED solution is also environmentally harmful, and it is recommended to use
a suitable destruction procedure before disposal.
5.2 Glycerol, solution in water, c(C H O ) = 65 % (by mass), having a viscosity of about 10 mPa⋅s.
3 8 3
5.3 Nitric acid (HNO ), dilute solution for cleaning the copper wire (6.4).
3
5.4 Acetone (CH COCH ), analytical reagent grade.
3 3
WARNING — Acetone is inflammable. Keep away from open fire. Do not use a gas heater. Follow
pertinent safety regulations.
5.5 Sulfuric-acid-based cleaning solution, designed for the washing of laboratory glassware.
5.6 Reagents, for calibration of capillary-tube viscometers equipped with an automatic time-recording
device.
As specified in the manufacturer's instructions.
6 Apparatus and materials
Ordinary laboratory apparatus and the following.
6.1 Capillary-tube viscometers (6.1.1 and 6.1.2), each with a water jacket, connected to the constant-
temperature bath (6.3). Two different viscometers are required because of the great difference between the
viscosities of the test solution and the solvent. Suitable viscometers are shown in Figure 1.
NOTE Viscometers without a water jacket can be used if measurement is made while the viscometer is immersed in
the constant-temperature bath.
Capillary-tube viscometers equipped with an automatic time-recording device may be used, provided they
comply with this International Standard and give similar results.
Clean the viscometers by rinsing with water and acetone (5.4). If any residual material remains after cleaning,
clean again with a sulfuric-acid-based cleaning solution (5.5) designed for use with laboratory glassware.
Soak particularly dirty tubes overnight or longer in this cleaning solution to remove all traces of contaminants.
After cleaning, drain all cleaning solution from the tube, rinse well with water and acetone and dry.
6.1.1 Capillary-tube viscometer for calibration purposes, having a capillary tube with a diameter of
(0,58 ± 0,02) mm and, in other respects, the dimensions given in Figure 1a).
NOTE The efflux time of the viscometer for distilled or deionized water will be about 60 s.
6.1.2 Capillary-tube viscometer for determination of limiting viscosity number at constant shear
rate, having a capillary tube with a diameter of (0,80 ± 0,05) mm and, in other respects, the dimensions given
in Figure 1b).
© ISO 2010 – All rights reserved 3

---------------------- Page: 8 ----------------------
ISO 5351:2010(E)
−1
NOTE 1 Efflux time is about 100 s for a solution of η/η = 8,4 at a shear rate (3.1) of (200 ± 30) s .
0
NOTE 2 Solutions of polymers of high relative molecular mass are usually non-Newtonian. Their viscosity decreases
as the shear rate (or in the present case the flow rate) increases. To avoid this complication, this International Standard
−1
specifies that the viscosity be determined at a shear rate of (200 ± 30) s . The dimensions of the viscometer [see
Figure 1b)] are such that, for a solution of viscosity 10 mPa⋅s, the efflux time is about 90 s and the maximum shear rate
−1
(3.1) is then within the range (200 ± 30) s .
Dimensions in millimetres

a)  Viscometer for calibration b)  Viscometer for determining viscosities
of test solutions
Key
1 volume 1,0 ml or 2,0 ml
2 volume 1,0 ml
Figure 1 — Capillary-tube viscometers
6.2 Dissolving bottles, of capacity approximately 52 ml, designed so that, when the bottle is filled with
50 ml of test solution, the remaining air can be expelled by squeezing the bottle.
A polyethylene bottle with a screw cap and rubber sealing ring can be used. Practice will enable the analyst to
expel the air and close the bottle with the screw cap in one operation. The air may also be expelled by a
current of nitrogen.
If the pulp does not dissolve readily, use a flat-sided bottle.
6.3 Constant-temperature bath, capable of being maintained at (25 ± 0,1) °C, capable of accommodating
the dissolving bottles (6.2) and provided with a pump for circulating the water through the jackets of the
viscometers (6.1.1 and 6.1.2).
4 © ISO 2010 – All rights reserved

---------------------- Page: 9 ----------------------
ISO 5351:2010(E)
6.4 Pieces of copper wire, approximately 3 mm in diameter and between 10 mm and 20 mm long.
Clean the pieces of copper wire regularly with dilute nitric acid, rinsing them thoroughly afterwards with
distilled or deionized water and letting them dry.
6.5 Balance, accurate to ± 0,1 mg.
6.6 Timing device, capable of being read to the nearest 0,1 s.
6.7 Shaker or magnetic stirrer, for dissolving the test portion.
7 Calibration of viscometers
7.1 Bring the temperature of the various calibration liquids (see 7.2) and the viscometers (6.1.1 and 6.1.2)
to (25,0 ± 0,1) °C.
7.2 Use the viscometer specified in 6.1.1 [see Figure 1a)] as the calibration viscometer to measure the
efflux times, in seconds, as described in 9.4, for
a) distilled or deionized water, t ,
w
b) glycerol solution (5.2), t , and
c
c) 0,5 mol/l CED solution, prepared by mixing equal volumes of distilled or deionized water and 1 mol/l CED
solution (5.1), t .
s
In each case, make at least two measurements and calculate the mean.
The ratio of the efflux time for the CED solution to that of distilled water, t /t , shall lie between 1,27 and 1,29.
s w
7.3 In the same way, measure the efflux time of the glycerol solution (5.2) in the viscometer to be calibrated
(6.1.2) [see Figure 1b)]. Calculate the viscometer factor f and the viscometer constant h using the equations
t
c
f = (7)
t
v
f
h = (8)
t
s
where
t is the efflux time, in seconds, of the glycerol solution in the calibration viscometer (6.1.1) [see
c
Figure 1a)];
t is the efflux time, in seconds, of the glycerol solution in the viscometer to be calibrated (6.1.2) [see
v
Figure 1b)];
t is the efflux time, in seconds, of 0,5 mol/l CED solution in the calibration viscometer (6.1.1) [see
s
Figure 1a)].
The viscometer factor f is an apparatus constant and the viscometer constant h is dependent upon the solvent
(CED solution) used. Consequently, h shall be determined each time a fresh CED solution is used.
7.4 If viscometers with an automatic timing device are used, carry out the calibration in accordance with the
manufacturer's instructions.
© ISO 2010 – All rights reserved 5

---------------------- Page: 10 ----------------------
ISO 5351:2010(E)
8 Sampling and preparation of sample
If the test is being made to evaluate a pulp lot, the sampling shall be carried out in accordance with ISO 7213.
If it is not, report the source of the sample and, if possible, the sampling procedure used.
Take a sample corresponding to approximately 10 g of oven-dry mass. Examine the pulp sample. If shives are
present, remove them by hand using a pair of tweezers or suspend the sample in water and remove the
shives by screening. If shives have been removed from the sample, this shall be stated in the test report. If it
is expected that the pulp will not disintegrate easily when the test solution is prepared (see 9.3), disintegrate
the sample in water in a suitable apparatus and form thin sheets in a Büchner funnel. Dry the pulp sample or
the prepared sheets at room temperature to constant mass (drying can also be performed at an elevated
temperature, but not above 60 °C as over-drying can lower the viscosity). Tear the dry sample into small
pieces by hand, wearing gloves, and using a pair of tweezers if convenient. Do not cut the dry sample or use a
mechanical shredder because the viscosity is likely to be lowered as a result of this process of disintegration.
9 Procedure
9.1 Choice of mass concentration of solution
If the approximate value of the limiting viscosity number of the sample is not known, use a solution of mass
concentration between 125 mg/50 ml and 150 mg/50 ml. If the limiting viscosity number obtained is not within
the range specified by Table 1 for that mass concentration, adjust the concentration accordingly.
Table 1 — Example of the mass concentration ρ to be used, as a function of the limiting viscosity
number [η] which will be measured
Limiting viscosity Quantity of sample Mass concentration,
number [η] ρ

ml/g mg/50 ml
g/ml
< 650 250 0,005
651 to 850 200 0,004
851 to 1 100 150 0,003
1 101 to 1 400 120 0,002 4

NOTE The mass concentration ρ specified in Table 1 is an approximate value when [η] is more than 1 100 ml/g.
Determine the appropriate mass concentration ρ such that the product [η] × ρ is within the range 3,0 ± 0,4 for up to
1 100 ml/g and 3,0 ± 0,1 for more than 1 100 ml/g.
For samples of very high limiting viscosity number, the viscosity ratio is markedly dependent upon the shear
−1
rate. If a shear rate of 200 s is to be obtained in the viscometer, it is necessary to use pulp mass
concentrations selected in such a way that the measurements are made at exactly the same viscosity ratio.
−1
For pulps with a limiting viscosity number of less than 1 100 ml/g, shear rates of (200 ± 30) s and values for
[η] × ρ of 3,0 ± 0,4 are allowable, as the error in the result will not exceed 2 %. For pulps with a limiting
viscosity number of more than 1 100 ml/g, the error will be considerably larger if these tolerances are allowed.
Accordingly, for accurate determinations at these high viscosities, it is necessary to select pulp mass
concentrations such that the product [η] × ρ is as close to 3,0 as possible and, in no case, outside the range
3,0 ± 0,1. If the approximate viscosity of the sample is unknown, an exploratory determination shall first be
made to enable the correct mass concentration to be selected.
6 © ISO 2010 – All rights reserved

---------------------- Page: 11 ----------------------
ISO 5351:2010(E)
9.2 Weighing of test portion
Weigh the chosen amount of sample to an accuracy of ± 0,5 mg into the dissolving bottle (6.2). At the same
time, weigh a separate test portion for the determination of the dry-matter content in accordance with ISO 638,
or any other method for the determination of dry-matter content giving similar results.
Carry out the determination in duplicate.
9.3 Preparation of test solution
Using a pipette, add 25,0 ml of distilled or deionized water to the test portion, together with 5 to 10 pieces of
copper wire (6.4) if using a shaker (6.7), or a stirrer bar if using a magnetic stirrer. Close the bottle, and shake
the mix until the test portion has been completely disintegrated.
Add 25,0 ml of the CED solution (5.1) and expel all of the remaining air by squeezing the bottle.
Re-close the bottle, and shake or stir again in the shaker or magnetic stirrer until the test portion is completely
dissolved.
Complete dissolution should take less than 30 min.
Cold-alkali-treated pulps, and unbleached pulps of high viscosity, may sometimes be difficult to dissolve. In
such cases, dissolution is facilitated if swelling is prevented by first dissolving the pulp in a solution of lower
CED concentration. Consequently, prepare a slurry of the pulp in 25 ml of distilled or deionized water, add
5 ml of the CED solution (5.1) and shake. Add another 5 ml of CED solution and shake again, continuing until
the total volume of CED solution added is 25,0 ml.
It is important that the sample dissolves completely. No lumps should be detectable.
Do not shake or stir for longer than necessary. When the pulp has dissolved, immerse the bottle in the
constant-temperature bath (6.3) until a temperature of (25 ± 0,1) °C has been reached.
As oxygen has a degrading effect on cellulose in CED solution, care shall be taken to avoid contact between
air and cellulose in CED solution. This can be done by using polyethylene dissolving bottles with screw caps.
9.4 Determination of efflux time
Using suction, draw into the viscometer (6.1.2) a sufficient quantity of the test solution prepared in 9.3. Allow
the solution to drain out freely, without any obstruction. When the meniscus is at the upper mark, start the
timer (6.6) and measure, to an accuracy of ± 0,2 s, the time to drain to the lower mark (the efflux time of the
solution).
Make at least two determinations, the results of which shall agree within ± 0,5 %. Calculate the mean value.
10 Calculation
10.1 Viscosity ratio
The viscosity ratio η (η/η ) (3.2) is given by the equation
ratio 0
η
η ==ht× (9)
ratio
η
0
where
t is the efflux time of the test solution, in seconds;
h is the viscometer constant, in reciprocal seconds, determined as specified in 7.3.
© ISO 2010 – All rights reserved 7

---------------------- Page: 12 ----------------------
ISO 5351:2010(E)
10.2 Limiting viscosity number
Using the value of the viscosity ratio calculated in 10.1, obtain the corresponding value for [η] × ρ from
Table B.1 in Annex B. Calculate the limiting viscosity number [η] to the nearest 1 ml/g.
The values in Annex B were calculated using Martin’s equation ([9] in the Bibliography).
ηη−
0
log⎡⎤η=− k⎡η⎤ ρ (10)
⎣⎦ ⎣⎦
ηρ×
0
where
η −η
0
is the viscosity number, in millilitres per gram;
ηρ
0
k is an empirical constant (for the pulp/CED system, k = 0,13);
ρ is the mass concentration (calculated on an oven-dry pulp basis), in grams per millilitre, of the
pulp in the diluted solvent (0,5 mol/l CED solution).
EXAMPLE
−1
h = 0,081 s (obtained from the calibration procedure)
t = 100 s (measured)
ρ = 0,003 96 g/ml (calculated from the test portion mass and the dry-matter content)
η = h × t = 0,081 × 100 = 8,21
ratio
The corresponding value for [η] × ρ, taken from Annex B, is 2,967 and thus
2,967
⎡⎤η== 749 ml/g≈ 750 ml/g
⎣⎦
0,003 96
10.3 Expression of results
Report the limiting viscosity number to the nearest 10 ml/g.
11 Precision
11.1 General check using reference pulp
As a check on the procedures used, it is recommended that the viscosity of a reference pulp with a known
limiting viscosity number in the same range as that of the sample be measured. Keep the reference pulp in a
cool, dry, dark place.
11.2 Repeatability
To determine the precision, three pulp samples were analysed in ten different laboratories, five using manual
time-recording and five using automatic time-recording. Each laboratory analysed the different pulp samples
ten times in duplicate. Each laboratory calculated the mean result and the coefficient of variation (CV). The
repeatability coefficient of variation is given in Table 2 separately for manual and automatic time-recording, at
three viscosity levels.
8 © ISO 2010 – All rights reserved

---------------------- Page: 13 ----------------------
ISO 5351:2010(E)
Table 2 — Repeatability of determination of limiting viscosity number
Viscosity level Manual time-recording Automatic time-recording
ml/g Mean CV Mean CV
ml/g % ml/g %
650 637 to 664 0,4 to 1,2 638 to 662 0,1 to 0,7
800 773 to 806 0,4 to 0,9 770 to 806 0,2 to 1,4
1 150 1 150 to 1 182 0,5 to 0,8 1 097 to 1 183 0,3 to 1,0

11.3 Reproducibility
Three pulp samples were analysed in ten different laboratories, five using manual time-recording and five
using
...

2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Pâtes -- Détermination de l'indice de viscosité limite à l'aide d'une solution de cupri-éthylènediamine (CED)Pulps -- Determination of limiting viscosity number in cupri-ethylenediamine (CED) solution85.040VlakninePulpsICS:Ta slovenski standard je istoveten z:ISO 5351:2010SIST ISO 5351:2011en01-maj-2011SIST ISO 5351:2011SLOVENSKI
STANDARD



SIST ISO 5351:2011



Reference numberISO 5351:2010(E)© ISO 2010
INTERNATIONAL STANDARD ISO5351Second edition2010-02-15Pulps — Determination of limiting viscosity number in cupri-ethylenediamine (CED) solution Pâtes — Détermination de l'indice de viscosité limite à l'aide d'une solution de cupri-éthylènediamine (CED)
SIST ISO 5351:2011



ISO 5351:2010(E) PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.
COPYRIGHT PROTECTED DOCUMENT
©
ISO 2010 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel.
+ 41 22 749 01 11 Fax
+ 41 22 749 09 47 E-mail
copyright@iso.org Web
www.iso.org Published in Switzerland
ii © ISO 2010 – All rights reserved
SIST ISO 5351:2011



ISO 5351:2010(E) © ISO 2010 – All rights reserved iii Contents Page Foreword.iv Introduction.v 1 Scope.1 2 Normative references.1 3 Terms and definitions.1 4 Principle.2 5 Reagents and materials.3 6 Apparatus and materials.3 7 Calibration of viscometers.5 8 Sampling and preparation of sample.6 9 Procedure.6 9.1 Choice of mass concentration of solution.6 9.2 Weighing of test portion.7 9.3 Preparation of test solution.7 9.4 Determination of efflux time.7 10 Calculation.7 10.1 Viscosity ratio.7 10.2 Limiting viscosity number.8 10.3 Expression of results.8 11 Precision.8 11.1 General check using reference pulp.8 11.2 Repeatability.8 11.3 Reproducibility.9 12 Test report.9 Annex A (normative)
Preparation and analysis of the cupri-ethylenediamine (CED) solution.10 Annex B (normative)
Values of [η] × ρ corresponding to different values of the viscosity ratio ηratio (η/η0).15 Annex C (informative)
Calculation of degree of polymerization.18 Bibliography.19
SIST ISO 5351:2011



ISO 5351:2010(E) iv © ISO 2010 – All rights reserved Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 5351 was prepared by Technical Committee ISO/TC 6, Paper, board and pulps, Subcommittee SC 5, Test methods and quality specifications for pulps. This second edition cancels and replaces the first edition (ISO 5351:2004), Subclause 6.1.1, Clauses 8 and 9 and Annex A of which have been technically revised. SIST ISO 5351:2011



ISO 5351:2010(E) © ISO 2010 – All rights reserved v Introduction The viscosity (or dynamic viscosity), symbol η, of a fluid is defined by the Newtonian equation τηγ= (1) where τ is the shear stress; η is the viscosity; γ is the velocity gradient dv/dz (v being the velocity of one plane relative to the other, and z the co-ordinate perpendicular to the two planes). In non-Newtonian behaviour, which is normally the case with
polymer solutions of high molecular mass such as cellulose, the ratio of the shear stress to the velocity gradient varies with the shear stress. The data required for evaluation of the limiting viscosity number of pulp in dilute solutions are derived by means of a capillary-tube viscometer (for terms and definitions, see Clause 3).
The results of these measurements are seriously affected by the shear rate. The mass concentration ρ of the pulp is therefore chosen so that, if multiplied by the limiting viscosity number [η], it gives a product [η] × ρ equal to 3,0 ± 0,4, corresponding to a viscosity ratio η /η0 equal to 6 to 10. The determination is then carried out at a reproducible shear rate G of (200 ± 30) s−1; this involves the employment of two viscometers, one for the calibration and one for the measurement of the viscosity of the pulp. The viscosity of a pulp in cupri-ethylenediamine (CED) solution gives an indication of the average degree of polymerization (DP) of the cellulose (see Annex C). Such a measurement therefore gives a relative indication of the degree of degradation (decrease in cellulose molecular mass) resulting from the pulping and/or bleaching process. Care must be taken in drawing conclusions regarding the strength properties of the pulp strictly from viscosity measurement, unless previous investigation has identified the relationship. A direct relationship between pulp strength and viscosity has not been found.
SIST ISO 5351:2011



SIST ISO 5351:2011



INTERNATIONAL STANDARD ISO 5351:2010(E) © ISO 2010 – All rights reserved 1 Pulps — Determination of limiting viscosity number in cupri-ethylenediamine (CED) solution 1 Scope This International Standard specifies a method which yields a number that is an estimate of the limiting viscosity number of pulp in a dilute cupri-ethylenediamine (CED) solution. This International Standard is primarily applicable to CED-soluble samples of bleached chemical pulps, but can also be applied to any kind of pulp that dissolves completely in CED solution. NOTE 1 The results can be used to estimate the extent of cellulose degradation caused by cooking or bleaching. Results obtained with samples containing appreciable amounts of substances other than cellulose must be interpreted with caution, however. NOTE 2 In the strictest sense, viscosity measurement procedures are applicable only to the polysaccharide fraction of the sample. This notwithstanding, viscosity measurement can usually be used to obtain a result on unbleached pulps having lignin contents of up to 4 %, because most of these pulps can be successfully dissolved in CED. However, the simple fact that an unbleached pulp can be dissolved in CED does not mean that the results are valid. In summary, viscosity results for pulps containing more than 0,5 % of lignin are not acceptable for technical specification purposes. 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 638, Paper, board and pulps — Determination of dry matter content — Oven-drying method ISO 7213, Pulps — Sampling for testing 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. 3.1 shear rate G velocity gradient of a fluid layer, parallel to the direction of flow, at the periphery of the capillary, defined by the equation 3f4VGrt=π (2) where V is the volume between two arbitrary calibration marks on the viscometer, in millilitres; r is the radius of the capillary tube, in centimetres; tf is the efflux time of the fluid, in seconds. SIST ISO 5351:2011



ISO 5351:2010(E) 2 © ISO 2010 – All rights reserved 3.2 viscosity ratio relative viscosity (deprecated) ηratio ratio of the viscosities η and η0 of the polymer solution of stated concentration and of the solvent, respectively, at the same temperature ratio0ηηη= (3) NOTE Viscosity ratio is dimensionless. 3.3 viscosity relative increment viscosity ratio (3.2) minus one 0001ηηηηη−−= (4) NOTE Viscosity relative increment is dimensionless. 3.4 viscosity number VN ratio of the viscosity relative increment (3.3) to the mass concentration of polymer ρ, expressed in grams per millilitre, in the solution 00ηηηρ−× (5) NOTE Viscosity number is measured in millilitres per gram. 3.5 limiting viscosity number [η] limiting value of the viscosity number (3.4) at infinite dilution 000limρηηηηρ→⎛⎞−=⎡⎤⎜⎟⎣⎦×⎝⎠ (6) NOTE 1 Limiting viscosity number is measured in millilitres per gram. NOTE 2 In the literature, the term intrinsic viscosity is often used and is equal to the limiting viscosity number. There is no general conversion factor between the limiting viscosity number in ml/g and other viscosities, determined by other methods and expressed in millipascal seconds (mPa⋅s) (see [7] in the Bibliography). 4 Principle Measurement of the times of efflux of the diluted solvent and the pulp solution through a capillary-tube viscometer at a specified mass concentration at 25 °C. Calculation by Martin’s formula (see [9] in the Bibliography) of the limiting viscosity number from these measurements, and from the known mass concentration of the solution. SIST ISO 5351:2011



ISO 5351:2010(E) © ISO 2010 – All rights reserved 3 5 Reagents and materials Use only chemicals of recognized analytical grade and only distilled or deionized water. 5.1 Cupri-ethylenediamine (CED) solution, c(CED) = (1,00 ± 0,02) mol/l, saturated with copper(ll) hydroxide, for convenience referred to as CED solution. The solution contains 1,0 mol/l of copper, and 2,0 mol/l of ethylenediamine. It is commercially available, or may be prepared and analysed as described in Annex A. WARNING — Because of the presence of allergens, avoid contact of the skin with CED and ethylenediamine solutions. Ethylenediamine is volatile and repeated exposure may lead to severe respiratory allergic reactions with subsequent sensitization. Cupri-ethylenediamine solutions should not be pipetted by mouth. CED solution is also environmentally harmful, and it is recommended to use a suitable destruction procedure before disposal. 5.2 Glycerol, solution in water, c(C3H8O3) = 65 % (by mass), having a viscosity of about 10 mPa⋅s. 5.3 Nitric acid (HNO3), dilute solution for cleaning the copper wire (6.4). 5.4 Acetone (CH3COCH3), analytical reagent grade. WARNING — Acetone is inflammable. Keep away from open fire. Do not use a gas heater. Follow pertinent safety regulations. 5.5 Sulfuric-acid-based cleaning solution, designed for the washing of laboratory glassware. 5.6 Reagents, for calibration of capillary-tube viscometers equipped with an automatic time-recording device. As specified in the manufacturer's instructions. 6 Apparatus and materials Ordinary laboratory apparatus and the following. 6.1 Capillary-tube viscometers (6.1.1 and 6.1.2), each with a water jacket, connected to the constant-temperature bath (6.3). Two different viscometers are required because of the great difference between the viscosities of the test solution and the solvent. Suitable viscometers are shown in Figure 1. NOTE Viscometers without a water jacket can be used if measurement is made while the viscometer is immersed in the constant-temperature bath. Capillary-tube viscometers equipped with an automatic time-recording device may be used, provided they comply with this International Standard and give similar results. Clean the viscometers by rinsing with water and acetone (5.4). If any residual material remains after cleaning, clean again with a sulfuric-acid-based cleaning solution (5.5) designed for use with laboratory glassware. Soak particularly dirty tubes overnight or longer in this cleaning solution to remove all traces of contaminants. After cleaning, drain all cleaning solution from the tube, rinse well with water and acetone and dry. 6.1.1 Capillary-tube viscometer for calibration purposes, having a capillary tube with a diameter of (0,58 ± 0,02) mm and, in other respects, the dimensions given in Figure 1a). NOTE The efflux time of the viscometer for distilled or deionized water will be about 60 s. 6.1.2 Capillary-tube viscometer for determination of limiting viscosity number at constant shear rate, having a capillary tube with a diameter of (0,80 ± 0,05) mm and, in other respects, the dimensions given in Figure 1b). SIST ISO 5351:2011



ISO 5351:2010(E) 4 © ISO 2010 – All rights reserved NOTE 1 Efflux time is about 100 s for a solution of η/η0 = 8,4 at a shear rate (3.1) of (200 ± 30) s−1. NOTE 2 Solutions of polymers of high relative molecular mass are usually non-Newtonian. Their viscosity decreases as the shear rate (or in the present case the flow rate) increases. To avoid this complication, this International Standard specifies that the viscosity be determined at a shear rate of (200 ± 30) s−1. The dimensions of the viscometer [see Figure 1b)] are such that, for a solution of viscosity 10 mPa⋅s, the efflux time is about 90 s and the maximum shear rate (3.1) is then within the range (200 ± 30) s−1. Dimensions in millimetres
a)
Viscometer for calibration b)
Viscometer for determining viscosities of test solutions Key 1 volume 1,0 ml or 2,0 ml 2 volume 1,0 ml Figure 1 — Capillary-tube viscometers 6.2 Dissolving bottles, of capacity approximately 52 ml, designed so that, when the bottle is filled with 50 ml of test solution, the remaining air can be expelled by squeezing the bottle. A polyethylene bottle with a screw cap and rubber sealing ring can be used. Practice will enable the analyst to expel the air and close the bottle with the screw cap in one operation. The air may also be expelled by a current of nitrogen. If the pulp does not dissolve readily, use a flat-sided bottle. 6.3 Constant-temperature bath, capable of being maintained at (25 ± 0,1) °C, capable of accommodating the dissolving bottles (6.2) and provided with a pump for circulating the water through the jackets of the viscometers (6.1.1 and 6.1.2). SIST ISO 5351:2011



ISO 5351:2010(E) © ISO 2010 – All rights reserved 5 6.4 Pieces of copper wire, approximately 3 mm in diameter and between 10 mm and 20 mm long. Clean the pieces of copper wire regularly with dilute nitric acid, rinsing them thoroughly afterwards with distilled or deionized water and letting them dry. 6.5 Balance, accurate to ± 0,1 mg. 6.6 Timing device, capable of being read to the nearest 0,1 s. 6.7 Shaker or magnetic stirrer, for dissolving the test portion. 7 Calibration of viscometers 7.1 Bring the temperature of the various calibration liquids (see 7.2) and the viscometers (6.1.1 and 6.1.2) to (25,0 ± 0,1) °C. 7.2 Use the viscometer specified in 6.1.1 [see Figure 1a)] as the calibration viscometer to measure the efflux times, in seconds, as described in 9.4, for a) distilled or deionized water, tw, b) glycerol solution (5.2), tc, and c) 0,5 mol/l CED solution, prepared by mixing equal volumes of distilled or deionized water and 1 mol/l CED solution (5.1), ts. In each case, make at least two measurements and calculate the mean. The ratio of the efflux time for the CED solution to that of distilled water, ts/tw, shall lie between 1,27 and 1,29. 7.3 In the same way, measure the efflux time of the glycerol solution (5.2) in the viscometer to be calibrated (6.1.2) [see Figure 1b)]. Calculate the viscometer factor f and the viscometer constant h using the equations cvtft= (7) sfht= (8) where tc is the efflux time, in seconds, of the glycerol solution in the calibration viscometer (6.1.1) [see Figure 1a)]; tv is the efflux time, in seconds, of the glycerol solution in the viscometer to be calibrated (6.1.2) [see Figure 1b)]; ts is the efflux time, in seconds, of 0,5 mol/l CED solution in the calibration viscometer (6.1.1) [see Figure 1a)]. The viscometer factor f is an apparatus constant and the viscometer constant h is dependent upon the solvent (CED solution) used. Consequently, h shall be determined each time a fresh CED solution is used. 7.4 If viscometers with an automatic timing device are used, carry out the calibration in accordance with the manufacturer's instructions. SIST ISO 5351:2011



ISO 5351:2010(E) 6 © ISO 2010 – All rights reserved 8 Sampling and preparation of sample If the test is being made to evaluate a pulp lot, the sampling shall be carried out in accordance with ISO 7213. If it is not, report the source of the sample and, if possible, the sampling procedure used. Take a sample corresponding to approximately 10 g of oven-dry mass. Examine the pulp sample. If shives are present, remove them by hand using a pair of tweezers or suspend the sample in water and remove the shives by screening. If shives have been removed from the sample, this shall be stated in the test report. If it is expected that the pulp will not disintegrate easily when the test solution is prepared (see 9.3), disintegrate the sample in water in a suitable apparatus and form thin sheets in a Büchner funnel. Dry the pulp sample or the prepared sheets at room temperature to constant mass (drying can also be performed at an elevated temperature, but not above 60 °C as over-drying can lower the viscosity). Tear the dry sample into small pieces by hand, wearing gloves, and using a pair of tweezers if convenient. Do not cut the dry sample or use a mechanical shredder because the viscosity is likely to be lowered as a result of this process of disintegration. 9 Procedure 9.1 Choice of mass concentration of solution If the approximate value of the limiting viscosity number of the sample is not known, use a solution of mass concentration between 125 mg/50 ml and 150 mg/50 ml. If the limiting viscosity number obtained is not within the range specified by Table 1 for that mass concentration, adjust the concentration accordingly. Table 1 — Example of the mass concentration ρ to be used, as a function of the limiting viscosity number [η] which will be measured Limiting viscosity number [η] ml/g Quantity of sample
mg/50 ml Mass concentration, ρ
g/ml < 650 651 to 850 851 to 1 100 1 101 to 1 400 250 200 150 120 0,005 0,004 0,003 0,002 4
NOTE The mass concentration ρ specified in Table 1 is an approximate value when [η] is more than 1 100 ml/g. Determine the appropriate mass concentration ρ such that the product [η] × ρ is within the range 3,0 ± 0,4 for up to 1 100 ml/g and 3,0 ± 0,1 for more than 1 100 ml/g. For samples of very high limiting viscosity number, the viscosity ratio is markedly dependent upon the shear rate. If a shear rate of 200 s−1 is to be obtained in the viscometer, it is necessary to use pulp mass concentrations selected in such a way that the measurements are made at exactly the same viscosity ratio. For pulps with a limiting viscosity number of less than 1 100 ml/g, shear rates of (200 ± 30) s−1 and values for [η] × ρ of 3,0 ± 0,4 are allowable, as the error in the result will not exceed 2 %. For pulps with a limiting viscosity number of more than 1 100 ml/g, the error will be considerably larger if these tolerances are allowed. Accordingly, for accurate determinations at these high viscosities, it is necessary to select pulp mass concentrations such that the product [η] × ρ is as close to 3,0 as possible and, in no case, outside the range 3,0 ± 0,1. If the approximate viscosity of the sample is unknown, an exploratory determination shall first be made to enable the correct mass concentration to be selected. SIST ISO 5351:2011



ISO 5351:2010(E) © ISO 2010 – All rights reserved 7 9.2 Weighing of test portion Weigh the chosen amount of sample to an accuracy of ± 0,5 mg into the dissolving bottle (6.2). At the same time, weigh a separate test portion for the determination of the dry-matter content in accordance with ISO 638, or any other method for the determination of dry-matter content giving similar results. Carry out the determination in duplicate. 9.3 Preparation of test solution Using a pipette, add 25,0 ml of distilled or deionized water to the test portion, together with 5 to 10 pieces of copper wire (6.4) if using a shaker (6.7), or a stirrer bar if using a magnetic stirrer. Close the bottle, and shake the mix until the test portion has been completely disintegrated. Add 25,0 ml of the CED solution (5.1) and expel all of the remaining air by squeezing the bottle. Re-close the bottle, and shake or stir again in the shaker or magnetic stirrer until the test portion is completely dissolved. Complete dissolution should take less than 30 min. Cold-alkali-treated pulps, and unbleached pulps of high viscosity, may sometimes be difficult to dissolve. In such cases, dissolution is facilitated if swelling is prevented by first dissolving the pulp in a solution of lower CED concentration. Consequently, prepare a slurry of the pulp in 25 ml of distilled or deionized water, add 5 ml of the CED solution (5.1) and shake. Add another 5 ml of CED solution and shake again, continuing until the total volume of CED solution added is 25,0 ml. It is important that the sample dissolves completely. No lumps should be detectable. Do not shake or stir for longer than necessary. When the pulp has dissolved, immerse the bottle in the constant-temperature bath (6.3) until a temperature of (25 ± 0,1) °C has been reached. As oxygen has a degrading effect on cellulose in CED solution, care shall be taken to avoid contact between air and cellulose in CED solution. This can be done by using polyethylene dissolving bottles with screw caps. 9.4 Determination of efflux time Using suction, draw into the viscometer (6.1.2) a sufficient quantity of the test solution prepared in 9.3. Allow the solution to drain out freely, without any obstruction. When the meniscus is at the upper mark, start the timer (6.6) and measure, to an accuracy of ± 0,2 s, the time to drain to the lower mark (the efflux time of the solution). Make at least two determinations, the results of which shall agree within ± 0,5 %. Calculate the mean value. 10 Calculation 10.1 Viscosity ratio The viscosity ratio ηratio (η/η0) (3.2) is given by the equation ratio0htηηη==× (9) where t is the efflux time of the test solution, in seconds; h is the viscometer constant, in reciprocal seconds, determined as specified in 7.3. SIST ISO 5351:2011



ISO 5351:2010(E) 8 © ISO 2010 – All rights reserved 10.2 Limiting viscosity number Using the value of the viscosity ratio calculated in 10.1, obtain the corresponding value for [η] × ρ from Table B.1 in Annex B. Calculate the limiting viscosity number [η] to the nearest 1 ml/g. The values in Annex B were calculated using Martin’s equation ([9] in the Bibliography). 00logkηηηηρηρ−=−⎡⎤⎡⎤⎣⎦⎣⎦× (10) where 00ηηηρ− is the viscosity number, in millilitres per gram; k is an empirical constant (for the pulp/CED system, k = 0,13); ρ is the mass concentration (calculated on an oven-dry pulp basis), in grams per millilitre, of the pulp in the diluted solvent (0,5 mol/l CED solution). EXAMPLE h = 0,081 s−1 (obtained from the calibration procedure) t = 100 s (measured) ρ = 0,003 96 g/ml (calculated from the test portion mass and the dry-matter content) ηratio = h × t = 0,081 × 100 = 8,21 The corresponding value for [η] × ρ, taken from Annex B, is 2,967 and thus 2,967749ml/g750ml/g0,00396η==≈⎡⎤⎣⎦ 10.3 Expression of results Report the limiting viscosity number to the nearest 10 ml/g. 11 Precision 11.1 General check using reference pulp As a check on the procedures used, it is recommended that the viscosity of a reference pulp with a known limiting viscosity number in the same range as that of the sample be measured. Keep the reference pulp in a cool, dry, dark place. 11.2 Repeatability To determine the precision, three pulp samples were analysed in ten different laboratories, five using manual time-recording and five using automatic time-recording. Each laboratory analysed the different pulp samples ten times in duplicate. Each laboratory calculated the mean result and the coefficient of variation (CV). The repeatability coefficient of variation is given in Table 2 separately for manual and automatic time-recording, at three viscosity levels. SIST ISO 5351:2011



ISO 5351:2010(E) © ISO 2010 – All rights reserved 9 Table 2 — Repeatability of determination of limiting viscosity number Manual time-recording Automatic time-recording Viscosity level ml/g Mean ml/g CV % Mean ml/g CV % 650 800 1 150 637 to 664 773 to 806 1 150 to 1 182 0,4 to 1,2 0,4 to 0,9 0,5 to 0,8 638 to 662 770 to 806 1 097 to 1 183 0,1 to 0,7 0,2 to 1,4 0,3 to 1,0
11.3 Reproducibility Three pulp samples were analysed in ten different laboratories, five using manual time-recording and five using automatic time-recording. The reproducibility is expressed as the coefficients of variation (CV) at three different viscosity levels. Table 3 — Reproducibility of determination of limiting viscosity number Viscosity level ml/g CV % 650 800 1 150 1,4 1,7 2,1
12 Test report The test report shall contain at least the following information: a) a reference to this International Standard; b) all information necessary for complete identification of the sample; c) the date and place of testing; d) the result, expressed in m
...

NORME ISO
INTERNATIONALE 5351
Deuxième édition
2010-02-15



Pâtes — Détermination de l'indice de
viscosité limite à l'aide d'une solution de
cupri-éthylènediamine (CED)
Pulps — Determination of limiting viscosity number in cupri-
ethylenediamine (CED) solution





Numéro de référence
ISO 5351:2010(F)
©
ISO 2010

---------------------- Page: 1 ----------------------
ISO 5351:2010(F)
PDF – Exonération de responsabilité
Le présent fichier PDF peut contenir des polices de caractères intégrées. Conformément aux conditions de licence d'Adobe, ce fichier
peut être imprimé ou visualisé, mais ne doit pas être modifié à moins que l'ordinateur employé à cet effet ne bénéficie d'une licence
autorisant l'utilisation de ces polices et que celles-ci y soient installées. Lors du téléchargement de ce fichier, les parties concernées
acceptent de fait la responsabilité de ne pas enfreindre les conditions de licence d'Adobe. Le Secrétariat central de l'ISO décline toute
responsabilité en la matière.
Adobe est une marque déposée d'Adobe Systems Incorporated.
Les détails relatifs aux produits logiciels utilisés pour la création du présent fichier PDF sont disponibles dans la rubrique General Info
du fichier; les paramètres de création PDF ont été optimisés pour l'impression. Toutes les mesures ont été prises pour garantir
l'exploitation de ce fichier par les comités membres de l'ISO. Dans le cas peu probable où surviendrait un problème d'utilisation,
veuillez en informer le Secrétariat central à l'adresse donnée ci-dessous.


DOCUMENT PROTÉGÉ PAR COPYRIGHT


©  ISO 2010
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous
quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit
de l'ISO à l'adresse ci-après ou du comité membre de l'ISO dans le pays du demandeur.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Publié en Suisse

ii © ISO 2010 – Tous droits réservés

---------------------- Page: 2 ----------------------
ISO 5351:2010(F)
Sommaire Page
Avant-propos .iv
Introduction.v
1 Domaine d'application .1
2 Références normatives.1
3 Termes et définitions .1
4 Principe.2
5 Réactifs et matériaux .3
6 Appareillage et matériel.3
7 Étalonnage des viscosimètres.5
8 Échantillonnage et préparation de l'échantillon .6
9 Mode opératoire.6
9.1 Choix de la concentration en masse de la solution.6
9.2 Pesage de la prise d'essai .7
9.3 Préparation de la solution pour essai .7
9.4 Détermination du temps d'écoulement .8
10 Calcul.8
10.1 Rapport de viscosité .8
10.2 Indice de viscosité limite .8
10.3 Expression des résultats.9
11 Fidélité .9
11.1 Vérification générale à l'aide d'une pâte de référence .9
11.2 Répétabilité .9
11.3 Reproductibilité .9
12 Rapport d'essai.10
Annexe A (normative) Préparation et analyse de la solution de cupri-éthylènediamine (CED) .11
Annexe B (normative) Valeurs de [η] × ρ correspondant à différentes valeurs du rapport de
viscosité η (η/η ) .16
ratio 0
Annexe C (informative) Calcul du degré de polymérisation.19
Bibliographie.20

© ISO 2010 – Tous droits réservés iii

---------------------- Page: 3 ----------------------
ISO 5351:2010(F)
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de
normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée
aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du
comité technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec
la Commission électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI,
Partie 2.
La tâche principale des comités techniques est d'élaborer les Normes internationales. Les projets de Normes
internationales adoptés par les comités techniques sont soumis aux comités membres pour vote. Leur
publication comme Normes internationales requiert l'approbation de 75 % au moins des comités membres
votants.
L'attention est appelée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable de ne
pas avoir identifié de tels droits de propriété et averti de leur existence.
L'ISO 5351 a été élaborée par le comité technique ISO/TC 6, Papiers, cartons et pâtes, sous-comité SC 5,
Méthodes d'essai et spécifications de qualité des pâtes.
Cette deuxième édition annule et remplace la première édition (ISO 5351:2004), dont le Paragraphe 6.1.1, les
Articles 8 et 9 et l'Annexe A ont fait l'objet d'une révision technique.
iv © ISO 2010 – Tous droits réservés

---------------------- Page: 4 ----------------------
ISO 5351:2010(F)
Introduction
La viscosité (ou viscosité dynamique), symbole η, d'un fluide est définie par l'équation newtonienne

τη= γ (1)

τ est la contrainte de cisaillement;
η est la viscosité;

γ est le gradient de vitesse dv/dz (v étant la vitesse d'un plan par rapport à l'autre, et z la coordonnée
perpendiculaire aux deux plans).
Dans un comportement non newtonien, ce qui est normalement le cas pour des solutions de polymères de
masse moléculaire élevée tels que la cellulose, le rapport de la contrainte de cisaillement au gradient de
vitesse varie avec la contrainte de cisaillement.
Les données requises pour l'évaluation de l'indice de viscosité limite d'une pâte dans des solutions diluées
(pour les termes et définitions, voir l'Article 3) sont obtenues à l'aide d'un viscosimètre à tube capillaire. Les
résultats de ces mesures sont sérieusement affectés par la vitesse de cisaillement.
La concentration en masse, ρ, de la pâte est donc choisie de sorte que, lorsqu'elle est multipliée par l'indice
de viscosité limite [η], elle donne un produit [η] × ρ égal à 3,0 ± 0,4, correspondant à un rapport de viscosité
η/η compris entre 6 et 10. La détermination est ensuite effectuée à une vitesse de cisaillement reproductible
0
−1
G de (200 ± 30) s ; ceci implique l'emploi de deux viscosimètres, un pour l'étalonnage et l'autre pour le
mesurage de la viscosité de la pâte.
La viscosité d'une pâte dans une solution de cupri-éthylènediamine (CED) donne une indication du degré
moyen de polymérisation (DP) de la cellulose (voir l'Annexe C). Ce mesurage donne donc une indication
relative du degré de dégradation (diminution de la masse moléculaire de la cellulose) résultant du procédé de
mise en pâte et/ou de blanchiment.
Il faut prendre garde de ne pas tirer de conclusions sur les propriétés de résistance de la pâte en se basant
exclusivement sur le mesurage de la viscosité, à moins qu'une étude précédente n'ait identifié leur relation.
Une relation directe entre la résistance de la pâte et la viscosité n'a pas été démontrée.

© ISO 2010 – Tous droits réservés v

---------------------- Page: 5 ----------------------
NORME INTERNATIONALE ISO 5351:2010(F)

Pâtes — Détermination de l'indice de viscosité limite à l'aide
d'une solution de cupri-éthylènediamine (CED)
1 Domaine d'application
La présente Norme internationale spécifie une méthode permettant de déterminer un nombre qui est une
estimation de l'indice de viscosité limite d'une pâte dans une solution diluée de cupri-éthylènediamine (CED).
La présente Norme internationale est essentiellement applicable à des échantillons de pâtes chimiques
blanchies solubles dans la CED, mais peut aussi être appliquée à tout type de pâte se dissolvant totalement
dans une solution de CED.
NOTE 1 Les résultats peuvent être utilisés pour estimer le degré de dégradation de la cellulose engendré par la
cuisson ou le blanchiment. Cependant, les résultats obtenus avec des échantillons contenant des quantités appréciables
de substances autres que la cellulose sont à interpréter avec prudence.
NOTE 2 Au sens le plus strict, les méthodes de mesurage de la viscosité ne sont applicables qu'à la fraction
polysaccharidique de l'échantillon. Néanmoins, un mesurage de la viscosité peut généralement être utilisé pour obtenir un
résultat sur des pâtes écrues ayant une teneur en lignine inférieure ou égale à 4 %, car la plupart de ces pâtes peuvent
être facilement dissoutes dans de la CED. Toutefois, le simple fait qu'une pâte écrue puisse être dissoute dans de la CED
ne signifie pas que les résultats sont valables. En résumé, les résultats de viscosité relatifs à des pâtes contenant plus de
0,5 % de lignine ne sont pas acceptables à des fins de spécification technique.
2 Références normatives
Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les
références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du
document de référence s'applique (y compris les éventuels amendements).
ISO 638, Papiers, cartons et pâtes — Détermination de la teneur en matières sèches — Méthode par
séchage à l'étuve
ISO 7213, Pâtes — Échantillonnage pour essais
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s'appliquent.
3.1
vitesse de cisaillement
G
gradient de vitesse d'une couche fluide, parallèlement à la direction d'écoulement, à la périphérie du capillaire,
défini par l'équation
4V
G = (2)
3
πrt
f

V est le volume entre deux repères d'étalonnage arbitraires sur le viscosimètre, en millimètres;
r est le rayon du tube capillaire, en centimètres;
t est le temps d'écoulement du fluide, en secondes.
f
© ISO 2010 – Tous droits réservés 1

---------------------- Page: 6 ----------------------
ISO 5351:2010(F)
3.2
rapport de viscosité
viscosité relative (rejeté)
η
ratio
rapport des viscosités η et η de la solution de polymère de concentration indiquée et du solvant,
0
respectivement, à la même température
η
η = (3)
ratio
η
0
NOTE Le rapport de viscosité est sans dimension.
3.3
incrément de viscosité relatif
rapport de viscosité (3.2) moins un
η −η
η
0
−=1 (4)
ηη
00
NOTE L'incrément de viscosité relatif est sans dimension.
3.4
indice de viscosité
VN
rapport de l'incrément de viscosité relatif (3.3) à la concentration en masse de polymère ρ, exprimée en
grammes par millilitre, dans la solution
η −η
0
(5)
ηρ×
0
NOTE L'indice de viscosité est mesuré en millilitres par gramme.
3.5
indice de viscosité limite
[η]
valeur limite de l'indice de viscosité (3.4) à dilution infinie
⎛⎞ηη−
0
⎡⎤η = lim (6)
⎜⎟
⎣⎦
ρ→0ηρ×
⎝⎠0
NOTE 1 L'indice de viscosité limite est mesuré en millilitres par gramme.
NOTE 2 Dans la littérature, l'expression «viscosité intrinsèque» est souvent utilisée; elle est équivalente à l'indice de
viscosité limite. Il n'existe pas de facteur de conversion général entre l'indice de viscosité limite, en ml/g, et d'autres
viscosités, déterminées par d'autres méthodes et exprimées en millipascal secondes (mPa·s) (voir Référence [7] de la
Bibliographie).
4 Principe
Mesurage des temps d'écoulement du solvant dilué et de la solution de pâte dans un viscosimètre à tube
capillaire, à une concentration en masse spécifiée, à 25 °C. Calcul par la formule de Martin (voir Référence [9]
de la Bibliographie) de l'indice de viscosité limite à partir de ces mesurages et de la concentration en masse
connue de la solution.
2 © ISO 2010 – Tous droits réservés

---------------------- Page: 7 ----------------------
ISO 5351:2010(F)
5 Réactifs et matériaux
Utiliser uniquement des produits chimiques de qualité analytique reconnue et uniquement de l'eau distillée ou
déionisée.
5.1 Solution de cupri-éthylènediamine (CED), c(CED) = (1,00 ± 0,02) mol/l, saturée en hydroxyde de
cuivre(II), désignée en tant que solution de CED pour plus de commodité.
La solution contient 1,0 mol/l de cuivre et 2,0 mol/l d'éthylènediamine. Elle est disponible dans le commerce
ou peut être préparée et analysée comme décrit à l'Annexe A.
AVERTISSEMENT — En raison de la présence d'allergènes, éviter tout contact de la peau avec des
solutions de CED et d'éthylènediamine. L'éthylènediamine est volatile et une exposition répétée peut
entraîner des réactions allergiques respiratoires sévères, suivies d'une sensibilisation. Il convient de
ne pas pipeter à la bouche les solutions de cupri-éthylènediamine. La solution de CED est nuisible à
l'environnement et il est recommandé d'appliquer une procédure de destruction appropriée avant son
élimination.
5.2 Glycérol, solution aqueuse, c(C H O ) = 65 % (en masse), ayant une viscosité d'environ 10 mPa·s.
3 8 3
5.3 Acide nitrique, (HNO ), solution diluée pour le nettoyage du fil de cuivre (6.4).
3
5.4 Acétone (CH COCH ), réactif de qualité analytique.
3 3
AVERTISSEMENT — L'acétone est inflammable. Tenir éloigné du feu. Ne pas utiliser de chauffage au
gaz. Suivre les règles de sécurité en vigueur.
5.5 Solution de nettoyage à base d'acide sulfurique, conçue pour le nettoyage de la verrerie de
laboratoire.
5.6 Réactifs, pour l'étalonnage des viscosimètres à tube capillaire équipés d'un dispositif automatique
d'enregistrement du temps.
Tels que spécifiés dans les instructions du fabricant.
6 Appareillage et matériel
Matériel courant de laboratoire et ce qui suit.
6.1 Viscosimètres à tube capillaire (6.1.1 et 6.1.2), munis chacun d'une chemise d'eau, raccordée à un
bain à température constante (6.3). Deux viscosimètres distincts sont requis en raison de la grande différence
entre les viscosités de la solution d'essai et du solvant. Des viscosimètres appropriés sont représentés à la
Figure 1.
NOTE Des viscosimètres sans chemise d'eau peuvent être utilisés si le mesurage est effectué alors que le
viscosimètre est immergé dans le bain à température constante.
Des viscosimètres à tube capillaire munis d'un dispositif automatique d'enregistrement du temps peuvent être
utilisés à condition qu'ils soient conformes à la présente Norme internationale et qu'ils donnent des résultats
similaires.
Nettoyer les viscosimètres par un rinçage à l'eau et à l'acétone (5.4). Si des matières résiduelles demeurent
après le nettoyage, nettoyer de nouveau avec une solution de nettoyage à base d'acide sulfurique (5.5)
conçue pour être utilisée avec la verrerie de laboratoire. Laisser tremper les tubes particulièrement sales au
moins une nuit entière dans cette solution de nettoyage afin d'éliminer toutes les traces de contaminants.
Après le nettoyage, évacuer toute la solution de nettoyage du tube, rincer soigneusement à l'eau et à
l'acétone et sécher.
© ISO 2010 – Tous droits réservés 3

---------------------- Page: 8 ----------------------
ISO 5351:2010(F)
6.1.1 Viscosimètre à tube capillaire pour étalonnage, comportant un tube capillaire de (0,58 ± 0,02) mm
de diamètre et présentant, par ailleurs, les dimensions indiquées à la Figure 1a).
NOTE Le temps d'écoulement du viscosimètre pour l'eau distillée ou déionisée sera d'environ 60 s.
6.1.2 Viscosimètre à tube capillaire pour la détermination de l'indice de viscosité limite à une vitesse
de cisaillement constante, comportant un tube capillaire de (0,80 ± 0,05) mm de diamètre et présentant, par
ailleurs, les dimensions indiquées à la Figure 1b).
NOTE 1 Le temps d'écoulement est d'environ 100 s pour une solution ayant un rapport η/η = 8,4 à une vitesse de
0
−1
cisaillement (3.1) de (200 ± 30) s .
NOTE 2 Les solutions de polymères de masse moléculaire relative élevée sont généralement non newtoniennes. Leur
viscosité diminue lorsque la vitesse de cisaillement (ou dans le présent cas, le débit) augmente. Pour éviter cette
complication, la présente Norme internationale spécifie que la viscosité doit être déterminée à une vitesse de cisaillement
−1
de (200 ± 30) s . Les dimensions du viscosimètre [voir Figure 1b)] sont telles que, pour une solution ayant une viscosité
de 10 mPa·s, le temps d'écoulement est d'environ 90 s et la vitesse de cisaillement (3.1) maximale se situe alors dans la
−1
plage (200 ± 30) s .
Dimensions en millimètres

a)  Viscosimètre pour étalonnage b)  Viscosimètre pour la détermination de la
viscosité de solutions d'essai
Légende
1 volume 1,0 ml ou 2,0 ml
2 volume 1,0 ml
Figure 1 — Viscosimètres à tube capillaire

4 © ISO 2010 – Tous droits réservés

---------------------- Page: 9 ----------------------
ISO 5351:2010(F)
6.2 Flacons de dissolution, d'une capacité d'environ 52 ml, conçus de sorte que, lorsque le flacon est
rempli de 50 ml de solution d'essai, l'air restant puisse être chassé en comprimant le flacon.
Il est possible d'utiliser un flacon en polyéthylène muni d'un bouchon à vis et d'une bague d'étanchéité en
caoutchouc. Une certaine pratique permettra à l'analyste de chasser l'air et de fermer le flacon avec le
bouchon vissé en une seule opération. L'air peut également être chassé par un courant d'azote.
Si la pâte ne se dissout pas facilement, utiliser un flacon carré.
6.3 Bain à température constante, pouvant être maintenu à (25 ± 0,1) °C, pouvant contenir les flacons de
dissolution (6.2) et équipé d'une pompe pour faire circuler l'eau dans les chemises des viscosimètres (6.1.1 et
6.1.2).
6.4 Morceaux de fil de cuivre, d'environ 3 mm de diamètre et 10 mm à 20 mm de long.
Nettoyer régulièrement les morceaux de fil de cuivre avec de l'acide nitrique dilué, puis les rincer
abondamment avec de l'eau distillée ou déionisée et les laisser sécher.
6.5 Balance, ayant une précision de ± 0,1 mg.
6.6 Chronomètre, donnant des indications à 0,1 s près.
6.7 Agitateur secoueur ou agitateur magnétique, pour dissoudre la prise d'essai.
7 Étalonnage des viscosimètres
7.1 Porter la température des différents liquides d'étalonnage (voir 7.2) et des viscosimètres (6.1.1 et 6.1.2)
à (25,0 ± 0,1) °C.
7.2 Utiliser le viscosimètre spécifié en 6.1.1 [voir Figure 1a)] comme viscosimètre d'étalonnage pour
mesurer les temps d'écoulement, en secondes, comme décrit en 9.4, pour
a) l'eau distillée ou déionisée, t ,
w
b) la solution de glycérol (5.2), t et
c
c) une solution de CED à 0,5 mol/l, préparée en mélangeant à volume égal de l'eau distillée ou déionisée et
la solution de CED à 1 mol/l (5.1), t .
s
Dans chaque cas, effectuer au moins deux mesurages et calculer la moyenne.
Le rapport du temps d'écoulement pour la solution de CED au temps d'écoulement de l'eau distillée, t /t , doit
s w
être compris entre 1,27 et 1,29.
7.3 De la même manière, mesurer le temps d'écoulement de la solution de glycérol (5.2) dans le
viscosimètre à étalonner (6.1.2) [voir Figure 1b)]. Calculer le facteur f du viscosimètre et la constante h du
viscosimètre en utilisant les équations
t
c
f = (7)
t
v
f
h = (8)
t
s
© ISO 2010 – Tous droits réservés 5

---------------------- Page: 10 ----------------------
ISO 5351:2010(F)

t est le temps d'écoulement, en secondes, de la solution de glycérol dans le viscosimètre
c
d'étalonnage (6.1.1) [voir Figure 1a)];
t est le temps d'écoulement, en secondes, de la solution de glycérol dans le viscosimètre à
v
étalonner (6.1.2) [voir Figure 1b)];
t est le temps d'écoulement, en secondes, de la solution de CED à 0,5 mol/l dans le viscosimètre
s
d'étalonnage (6.1.1) [voir Figure 1a)].
Le facteur f du viscosimètre est une constante de l'appareillage et la constante h du viscosimètre dépend du
solvant (solution de CED) utilisé. En conséquence, h doit être déterminée chaque fois qu'une solution de CED
fraîche est utilisée.
7.4 Si des viscosimètres équipés d'un chronomètre automatique sont utilisés, effectuer l'étalonnage
conformément aux instructions du fabricant.
8 Échantillonnage et préparation de l'échantillon
Si l'essai est réalisé pour évaluer un lot de pâte, l'échantillonnage doit être effectué conformément à
l'ISO 7213. Si ce n'est pas le cas, indiquer dans le rapport l'origine de l'échantillon et, si possible, la méthode
d'échantillonnage utilisée.
Prélever un échantillon correspondant à environ 10 g de masse anhydre. Examiner l'échantillon de pâte. Si
des bûchettes sont présentes, les retirer manuellement à l'aide de petites pinces ou mettre l'échantillon en
suspension dans l'eau et éliminer les bûchettes par tamisage. Si des bûchettes ont été retirées de l'échantillon,
cela doit être consigné dans le rapport d'essai. S'il est prévisible que la pâte ne se désintègrera pas
facilement lorsque la solution d'essai sera préparée (voir 9.3), désintégrer l'échantillon dans l'eau dans un
appareillage approprié et former des feuilles minces dans un entonnoir de Büchner. Sécher l'échantillon de
pâte ou les feuilles préparées à température ambiante jusqu'à masse constante (le séchage peut aussi être
effectué à une température élevée, mais pas supérieure à 60 °C, car un séchage excessif peut abaisser la
viscosité). Déchirer l'échantillon sec en petits morceaux à la main, en portant des gants et en utilisant de
petites pinces si nécessaire. Ne pas couper l'échantillon sec ou utiliser un broyeur mécanique, parce que la
viscosité est susceptible de diminuer à la suite d'un tel processus de désintégration.
9 Mode opératoire
9.1 Choix de la concentration en masse de la solution
Si la valeur approximative de l'indice de viscosité limite de l'échantillon est inconnue, utiliser une solution dont
la concentration en masse est comprise entre 125 mg/50 ml et 150 mg/50 ml. Si l'indice de viscosité limite
obtenu ne se situe pas dans la plage spécifiée dans le Tableau 1 pour cette concentration en masse, ajuster
la concentration en conséquence.
6 © ISO 2010 – Tous droits réservés

---------------------- Page: 11 ----------------------
ISO 5351:2010(F)
Tableau 1 — Exemple de concentration en masse ρ à utiliser, en fonction de
l'indice de viscosité limite [η] qui sera mesuré
Indice de viscosité Quantité Concentration en
limite d'échantillon masse
[η] ρ
ml/g mg/50 ml g/ml
< 650 250 0,005
651 à 850 200 0,004
851 à 1 100 150 0,003
1 101 à 1 400 120 0,002 4

NOTE La concentration en masse ρ spécifiée dans le Tableau 1 est une valeur approximative lorsque [η] est
supérieur à 1 100 ml/g. Déterminer la concentration en masse ρ appropriée telle que le produit [η] × ρ soit compris dans la
plage 3,0 ± 0,4 jusqu'à 1 100 ml/g et 3,0 ± 0,1 au-delà de 1 100 ml/g.
Pour les échantillons ayant un indice de viscosité limite très élevé, le rapport de viscosité dépend nettement
−1
de la vitesse de cisaillement. Si une vitesse de cisaillement de 200 s doit être atteinte dans le viscosimètre,
il est nécessaire d'utiliser des concentrations en masse de pâte sélectionnées de sorte que les mesurages
soient effectués exactement au même rapport de viscosité. Pour les pâtes ayant un indice de viscosité limite
−1
inférieur à 1 100 ml/g, des vitesses de cisaillement de (200 ± 30) s et des valeurs de [η] × ρ de 3,0 ± 0,4
sont admissibles car l'erreur du résultat ne dépassera pas 2 %. Pour les pâtes ayant un indice de viscosité
limite supérieur à 1 100 ml/g, l'erreur sera considérablement plus élevée si ces tolérances sont admises. En
conséquence, pour des déterminations précises à ces viscosités élevées, il est nécessaire de sélectionner
des concentrations en masse de pâte telles que le produit [η] × ρ soit aussi proche de 3,0 que possible et en
aucun cas extérieur à la plage 3,0 ± 0,1. Si la viscosité approximative de l'échantillon est inconnue, une
détermination préliminaire doit d'abord être effectuée pour pouvoir sélectionner la bonne concentration en
masse.
9.2 Pesage de la prise d'essai
Peser la quantité choisie d'échantillon avec une précision de ± 0,5 mg dans le flacon de dissolution (6.2). En
même temps, peser une prise d'essai séparée pour déterminer la teneur en matières sèches conformément à
l'ISO 638 ou à toute autre méthode de détermination de la teneur en matières sèches donnant des résultats
similaires.
Effectuer la détermination en double.
9.3 Préparation de la solution pour essai
À l'aide d'une pipette, ajouter 25,0 ml d'eau distillée ou déionisée à la prise d'essai, ainsi que 5 à 10 morceaux
de fil de cuivre (6.4) si un agitateur secoueur est utilisé (voir 6.7) ou un barreau magnétique si un agitateur
magnétique est utilisé. Fermer le flacon et secouer le mélange jusqu'à ce que la prise d'essai ait été
totalement désintégrée.
Ajouter 25,0 ml de la solution de CED (5.1) et chasser tout l'air restant en comprimant le flacon.
Refermer le flacon et le secouer ou l'agiter à nouveau dans l'agitateur secoueur ou avec l'agitateur
magnétique jusqu'à ce que la prise d'essai soit totalement dissoute.
Il convient que la dissolution complète prenne moins de 30 min.
Les pâtes ayant subi un traitement alcalin à froid et les pâtes écrues ayant une viscosité élevée peuvent
parfois être difficiles à dissoudre. Dans ce cas, la dissolution est facilitée si le gonflement est empêché en
dissolvant tout d'abord la pâte dans une solution ayant une plus faible concentration en CED. En
conséquence, préparer une bouillie de la pâte dans 25 ml d'eau distillée ou déionisée, ajouter 5 ml de la
© ISO 2010 – Tous droits réservés 7

---------------------- Page: 12 ----------------------
ISO 5351:2010(F)
solution de CED (5.1) et secouer. Ajouter 5 ml supplémentaires de la solution de CED et secouer à nouveau.
Continuer jusqu'à ce que le volume total de solution de CED ajoutée soit de 25,0 ml.
Il est important que la dissolution de l'échantillon soit complète. Il convient qu'aucun grumeau ne soit
détectable.
Ne pas secouer ou agiter plus longtemps que nécessaire. Lorsque la pâte est dissoute, immerger le flacon
± 0,1) °C.
dans le bain à température constante (6.3) jusqu'à ce qu'il atteigne une température de (25
L'oxygène ayant un effet de dégradation sur la cellulose contenue dans la solution de CED, il faut veiller à
éviter tout contact entre l'air et la cellulose contenue dans la solution de CED. Pour cela, il est possible
d'utiliser des flacons de dissolution en polyéthylène munies d'un bouchon à vis.
9.4 Détermination du temps d'écoulement
Par succion, aspirer dans le viscosimètre (6.1.2) une quantité suffisante de la solution pour essai préparée
en 9.3. Laisser la solution s'écouler librement, sans obstacle. Lorsque le ménisque se trouve au niveau du
repère supérieur, déclencher le
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.