Aerospace series - Modular and open avionics architectures - Part 004: Packaging

This European standard establishes uniform requirements for Packaging for the Common Functional
Modules (CFM) within an Integrated Modular Avionic (IMA) system. It comprises the module physical
properties and the Module Physical Interface (MPI) definitions together with guidelines for IMA rack
and the operational environment.
The characteristics addressed by the Packaging Standard are:
Interchangeability:
 For a given cooling method all modules conforming to the packaging standard will function
correctly when inserted into any rack slot conforming to the standard for the cooling method.
 All modules conforming to the Module Physical Interface (MPI) definitions for connector, IED and
cooling interface will function correctly when inserted into any rack slot conforming to the same
MPI definition.
Maintainability:
 All modules are easily removable at first line.
 No special tools required at first line.
 No manual adjustment is necessary when installing modules. No tool is required for installation or
removal of the modules.
 Mechanical keying is provided that prevents insertion of a module into a rack slot that may cause
an unsafe condition.
The Module Physical Interface definition, contained within this standard, does not include the
properties of the signalling used in the optical interface (e. g. wavelength). These are covered in
EN 4660-003.

Luft- und Raumfahrt - Modulare und offene Avionikarchitekturen - Teil 004: Paketierung

Diese Europäische Norm legt einheitliche Anforderungen an die Paketierung der Standardfunktionsmodule (CFM) innerhalb eines Integrierten Modularen Avionik-Systems (en: Integrated Modular Avionic, IMA) fest. Dieses Dokument umfasst die physischen Moduleigenschaften und die Definitionen der physischen Modulschnittstelle (MPI) sowie Leit¬linien zum IMA-Gestell und zur Betriebsumgebung.
Der Paketierungsstandard behandelt die folgenden Merkmale:
Austauschbarkeit:
   Bei einem gegebenen Kühlverfahren funktionieren alle dem Paketierungsstandard entsprechenden Module ordnungsgemäß, wenn sie in einen beliebigen Gestellsteckplatz eingesetzt sind, der dem für das Kühlverfahren geltenden Standard entspricht.
   Alle den MPI-Definitionen für Steckverbinder, IED und Kühlschnittstelle entsprechenden Module funk-tionieren ordnungsgemäß, wenn sie in einen beliebigen Gestellsteckplatz eingesetzt sind, der derselben MPI-Definition entspricht.
Instandhaltbarkeit:
   Alle Module sind vor Ort leicht auszubauen.
   Vor Ort sind keine speziellen Werkzeuge erforderlich.
   Beim Einbau von Modulen ist keine manuelle Anpassung notwendig. Zum Ein  und Ausbau der Module ist kein Werkzeug erforderlich.
   Es ist eine mechanische Verstecksicherung vorgesehen, die verhindert, dass das Modul in einen Steck-platz eingesetzt wird, der möglicherweise einen unsicheren Zustand bewirkt.
Die in dieser Norm enthaltene Definition der physischen Modulschnittstelle umfasst nicht die Signalisie-rungseigenschaften der optischen Schnittstelle (z. B. die Wellenlänge). Diese werden von EN 4660 003 abgedeckt.

Série aérospatiale - Architectures avioniques modulaires et ouvertes - Partie 004 : Packaging

Aeronavtika - Modularne in odprte letalske elektronske arhitekture - 004. del: Pakiranje

Ta evropski standard določa enotne zahteve glede pakiranja za skupne funkcijske module (CFM) znotraj integriranega modularnega letalskega sistema (IMA). Vključuje fizične lastnosti modula in definicije fizičnega vmesnika modula (MPI) s smernicami za stojalo IMA in delovno okolje.
Značilnosti, ki jih zajema standard za pakiranje:
Medsebojna zamenljivost:
 Za določen način hlajenja bodo vsi moduli, ki so skladni s standardom za pakiranje, ob vstavitvi v katero koli režo stojala, ki je skladno s standardom za način hlajenja, delovali pravilno.
 Vsi moduli, ki so skladni z definicijami fizičnega vmesnika modula (MPI) za konektor, IED in hladilni vmesnik, bodo ob vstavitvi v katero koli režo stojala, ki je skladno z isto definicijo vmesnika MPI, delovali pravilno.
Primernost za vzdrževanje:
 Vse module v prvi vrsti je mogoče preprosto odstraniti.
 Za prvo vrsto niso potrebna nobena posebna orodja.
 Ročne prilagoditve pri namestitvi modulov niso potrebne. Za namestitev ali odstranitev modulov ni potrebno nobeno orodje.
 Na voljo je mehansko kodiranje, ki preprečuje vstavitev modula v režo stojala, ki bi povzročila nevaren pogoj.
Definicija fizičnega vmesnika modula, ki jo vsebuje ta standard, ne vključuje lastnosti signalizacije, uporabljene pri optičnih vmesnikih (npr. valovna dolžina). Te so obravnavane v standardu EN 4660-003.

General Information

Status
Published
Publication Date
08-Sep-2019
Technical Committee
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
02-Sep-2019
Due Date
07-Nov-2019
Completion Date
09-Sep-2019

Relations

Buy Standard

Standard
EN 4660-004:2019
English language
36 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)

SLOVENSKI STANDARD
SIST EN 4660-004:2019
01-oktober-2019
Nadomešča:
SIST EN 4660-004:2011
Aeronavtika - Modularne in odprte letalske elektronske arhitekture - 004. del:
Pakiranje
Aerospace series - Modular and open avionics architectures - Part 004: Packaging
Luft- und Raumfahrt - Modulare und offene Avionikarchitekturen - Teil 004: Paketierung
Série aérospatiale - Architectures avioniques modulaires et ouvertes - Partie 004 :
Packaging
Ta slovenski standard je istoveten z: EN 4660-004:2019
ICS:
49.090 Oprema in instrumenti v On-board equipment and
zračnih in vesoljskih plovilih instruments
SIST EN 4660-004:2019 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
SIST EN 4660-004:2019

---------------------- Page: 2 ----------------------
SIST EN 4660-004:2019


EN 4660-004
EUROPEAN STANDARD

NORME EUROPÉENNE

August 2019
EUROPÄISCHE NORM
ICS 49.090 Supersedes EN 4660-004:2011
English Version

Aerospace series - Modular and open avionics
architectures - Part 004: Packaging
Série aérospatiale - Architectures avioniques Luft- und Raumfahrt - Modulare und offene
modulaires et ouvertes - Partie 004 : Packaging Avionikarchitekturen - Teil 004: Paketierung
This European Standard was approved by CEN on 2 December 2018.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.





EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2019 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 4660-004:2019 E
worldwide for CEN national Members.

---------------------- Page: 3 ----------------------
SIST EN 4660-004:2019
EN 4660-004:2019 (E)
Contents
Page
European foreword . 3
Introduction . 4
1 Scope . 5
2 Normative references . 5
3 Terms and definitions and abbreviations . 7
4 Generic module specification . 11
5 Module mechanical tests . 22
6 Guidelines for a rack slot . 24
7 Typical modular avionics environment . 25
Annex A (informative) Standard evolution form . 36

2

---------------------- Page: 4 ----------------------
SIST EN 4660-004:2019
EN 4660-004:2019 (E)
European foreword
This document (EN 4660-004:2019) has been prepared by the Aerospace and Defence Industries
Association of Europe - Standardization (ASD-STAN).
After enquiries and votes carried out in accordance with the rules of this Association, this Standard has
received the approval of the National Associations and the Official Services of the member countries of
ASD, prior to its presentation to CEN.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by February 2020, and conflicting national standards
shall be withdrawn at the latest by February 2020.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document supersedes EN 4660-004:2011.
According to the CEN-CENELEC Internal Regulations, the national standards organisations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of
North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the
United Kingdom.
3

---------------------- Page: 5 ----------------------
SIST EN 4660-004:2019
EN 4660-004:2019 (E)
Introduction
The purpose of this MOAA standard is to define a set of open architecture standards, concepts &
guidelines for Advanced Avionics Architectures (A3).
The three main goals for the MOAA Standards are:
 reduced life cycle costs;
 improved mission performance;
 improved operational performance.
The MoAA standards are organised as a set of documents including:
 a set of agreed standards that describe, using a top down approach, the Architecture overview to all
interfaces required to implement the core within avionics system;
 the guidelines for system implementation through application of the standards.
The document hierarchy is given hereafter: (in this figure the document is highlighted).

Figure 1 — MOAA Standard Documentation Hierarchy
4

---------------------- Page: 6 ----------------------
SIST EN 4660-004:2019
EN 4660-004:2019 (E)
1 Scope
This European standard establishes uniform requirements for Packaging for the Common Functional
Modules (CFM) within an Integrated Modular Avionic (IMA) system. It comprises the module physical
properties and the Module Physical Interface (MPI) definitions together with guidelines for IMA rack
and the operational environment.
The characteristics addressed by the Packaging Standard are:
Interchangeability:
 For a given cooling method all modules conforming to the packaging standard will function
correctly when inserted into any rack slot conforming to the standard for the cooling method.
 All modules conforming to the Module Physical Interface (MPI) definitions for connector, IED and
cooling interface will function correctly when inserted into any rack slot conforming to the same
MPI definition.
Maintainability:
 All modules are easily removable at first line.
 No special tools required at first line.
 No manual adjustment is necessary when installing modules. No tool is required for installation or
removal of the modules.
 Mechanical keying is provided that prevents insertion of a module into a rack slot that may cause
an unsafe condition.
The Module Physical Interface definition, contained within this standard, does not include the
properties of the signalling used in the optical interface (e. g. wavelength). These are covered in
EN 4660-003.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
EN 2101, Aerospace series — Chromic acid anodizing of aluminium and wrought aluminium alloys
EN 2284, Aerospace series — Sulphuric acid anodizing of aluminium and wrought aluminium alloys
EN 2437, Aerospace series — Chromate conversion coatings (yellow) for aluminium and aluminium alloys
EN 4165 (all parts), Aerospace Series — Connectors, electrical, rectangular, modular — Operating
temperature 175 °C continuous
EN 4660-001, Aerospace series — Modular and Open Avionics Architectures — Part 001: Architecture
EN 4660-002, Aerospace series — Modular and Open Avionics Architectures — Part 002: Common
Functional Modules
5

---------------------- Page: 7 ----------------------
SIST EN 4660-004:2019
EN 4660-004:2019 (E)
EN 4660-003, Aerospace series — Modular and Open Avionics Architectures — Part 003: Communi-
cations/Network
EN 4660-005, Aerospace series — Modular and Open Avionics Architectures — Part 005: Software
1
ASAAC2-GUI-32450-001-CPG Issue 01, Final Draft of Guidelines for System Issues
— Volume 1 — System Management.
— Volume 2 — Fault Management.
— Volume 3 — Initialisation and Shutdown.
— Volume 4 — Configuration / Reconfiguration.
— Volume 5 — Time Management.
— Volume 6 — Security.
— Volume 7 — Safety.
2
ARINC 600, Air transport avionics — Equipment interfaces
2
ARINC 650, Integrated Modular Avionics Packaging and Interfaces
2
ARINC 836, Cabin Standard Enclosures — Modular Rack Principle (MRP)
3
VITA 46, VPX: Baseline
Def Stan 03-18, Chromate Conversion Coatings (Chromate Filming Treatments) Grades: Standard and
4
Brushing for Aluminium and Aluminium Alloys
4
Def Stan 03-24, Chromic Acid Anodizing of Aluminium and Aluminium Alloys
4
Def Stan 03-25, Sulphuric Acid Anodizing of Aluminium and Aluminium Alloy
BS 5599, Specification for hard anodic oxidation coatings on aluminium and its alloys for engineering
5
purposes
6
MIL-C-26074E, Coatings, Electroless Nickel Requirements
6
MIL-A-8625E, Anodic Coatings for Aluminium and Aluminium Alloys
6
MIL-C-81706, Chemical Conversion Materials for Coating Aluminium and Aluminium Alloys
6
MIL-C-5541, Chemical Conversion Coatings on Aluminium and Aluminium Alloys

1 In preparation at the date of publication of this European standard.
2 Published by: ARINC, www.aviation-ia.com/product-categories.
3 Published by: VMEbus International Trade Association (VITA), www.vita.com/Standards.
4 Published by: UK Ministry of Defence, www.dstan.mod.uk.
5 Published by: British Standards Institution (BSI), www.bsigroup.com.
6 Published by: DoD National (US) Mil. Department of Defense http://www.defenselink.mil/.
6

---------------------- Page: 8 ----------------------
SIST EN 4660-004:2019
EN 4660-004:2019 (E)
3 Terms and definitions and abbreviations
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
 ISO Online browsing platform: available at http://www.iso.org/obp
 IEC Electropedia: available at http://www.electropedia.org/
3.1 General
Use of “shall”, “should” and “may” within the standards observe the following rules:
 The word SHALL in the text express a mandatory requirement of the standard.
 The word SHOULD in the text expresses a recommendation or advice on implementing such a
requirement of the standard. It is expected that such recommendations or advice will be followed
unless good reasons are stated for not doing so.
 The word MAY in the text expresses a permissible practice or action. It does not express a
requirement of the standard.
3.2 Abbreviations
AFA Air Flow Around
AFT Air Flow Through
ARINC Aeronautical Radio Inc
ASAAC Allied Standard Avionics Architecture Council
CC Conduction Cooled
CFM Common Functional Module
DAF Direct Air Flow
EMC ElectroMagnetic Compatibility
IED Insertion Extraction Device
IMA Integrated Modular Avionics
MBU Multiple Bit Upset
MPI Module Physical Interface
MT Mechanical Transfer
NBC Nuclear, Biological and Chemical
PSD Power Spectral Density
SEU Single Event Upset
7

---------------------- Page: 9 ----------------------
SIST EN 4660-004:2019
EN 4660-004:2019 (E)
3.3 Precedence
Figures in this document have precedence over text.
3.4 Terms and definitions
3.4.1 General terms
3.4.1.1
backplane
structure containing optical and electrical communication paths and electrical power supply wiring
between modules which shall be a removable structure or integrated into the rack
3.4.1.2
cassette
mechanical frame enclosing the electrical components of the module
3.4.1.3
connector
device to provide all of the electrical and optical connections between the cassette and the backplane
Note 1 to entry: The connector fixed to the module cassette plugs into the corresponding connector of the
backplane.
Note 2 to entry: It comprises a shell, inserts contacts and ferrules.
3.4.1.4
contact
single signal connection, either an electrical pin/socket or a single fibre
Note 1 to entry: In the case of fibre optic contacts this does not necessarily imply the mating parts are in
mechanical contact.
3.4.1.5
cooling Interface
surface which contributes to the removal of heat from the module
3.4.1.6
ferrule
housing and alignment device for one or more optical fibres
3.4.1.7
insert
section of a connector containing a number of ferrules or contacts
3.4.1.8
Insertion Extraction Device (IED)
device to aid the insertion and extraction of the module from the rack and give mechanical advantage
over the mating forces associated with the connector
Note 1 to entry: It also provides the retention system for the module within the rack such that the module
connector remains mated under all conditions specified.
8

---------------------- Page: 10 ----------------------
SIST EN 4660-004:2019
EN 4660-004:2019 (E)
3.4.1.9
module
grouping of electronic devices, assembled together to perform a specific function, into a flight-line
protected hardware assembly
Note 1 to entry: This is the Common Functional Module.
Note 2 to entry: The CFM is replaceable at first line.
3.4.1.10
rack
mechanical arrangement for housing avionics equipment
Note 1 to entry: This provides physical support, environmental protection and cooling for the modules.
3.4.1.11
shell
outer mating parts of the connector that provide the structure of the connector, fixings to the module
and backplane parts and the support for the Inserts
3.4.2 Module mechanical items
A Common Functional Module comprises:
 a cassette;
 a connector;
 an insertion extraction device.
The volume of the cassette is delimited by a cuboid. The module is referenced against a Cartesian
Reference System as represented on Figure 2.
9

---------------------- Page: 11 ----------------------
SIST EN 4660-004:2019
EN 4660-004:2019 (E)

Key
1 Side C 6 Side D
2 Side A 7 Insertion Direction
3 Module Header 8 Side B
4 Volume for Insertion/Extraction Device 9 Connector
5 Guide Edge 10 Reference Plane
Figure 2 — Module definitions
Guide Edge Edge of the CFM running along the X axis. It defines the location of the
module within the rack.
Height The cassette dimension in the Z-axis. It is measured from cassette Side C to
cassette Side D.
Length The cassette dimension in the X-axis measured from the Reference Plane to
the module header (this excludes the Insertion Extraction Device and the

connector).
Module header The surface of the cassette parallel to the Reference Plane, and opposite to
the cassette surface contained within the Reference Plane The IED shall be
mounted on this surface.
10

---------------------- Page: 12 ----------------------
SIST EN 4660-004:2019
EN 4660-004:2019 (E)
Side A Surface of the cassette contained within the X, Z plane. Viewing the module
in the direction of insertion, with the cassette Side C at the top, Side A is to
the left.
Side B Surface of the cassette parallel to and furthest from the X, Z plane. Viewing
the module in the direction of insertion, with the cassette Side C at the top,
Side B is to the right.
Side C Surface of the cassette parallel to and furthest from the X, Y plane. It
contains one of the two cassette cooling interfaces, the other being within Side
D.
Side D Surface of the cassette contained within the X, Y plane. It contains one of the
two cassette cooling interfaces, the other being within Side C.
Reference Plane Plane defined by the Y and Z axis. It is perpendicular to the direction of
insertion of the module and passes through the mating surface between the
cassette and the connector.
Width The cassette dimension in the Y-axis of the module, measured from Side A to
Side B.
3.4.3 Tolerances
Unless otherwise stated, tolerances shall be ±0,2 mm.
4 Generic module specification
4.1 Introduction
This clause specifies the physical properties and the principle physical interfaces for MOAA Common
Functional Modules, i.e. the Module Physical Interface (MPI). The MPI comprises:
 the Connector Interface between Common Functional Module and Backplane;
 the Cooling Interface;
 the Insertion Extraction Device (IED).
The MoAA Common Functional Module supports four cooling techniques. These being:
 Conduction Cooling (CC);
 Direct Air Flow Cooling (DAF);
 Air Flow Around Cooling (AFA);
 Air Flow Through Cooling (AFT).
It is assumed that a System Design Specification will be raised for each specific project implementation.
It will define the CFM characteristics which are not imposed by the standard.
11

---------------------- Page: 13 ----------------------
SIST EN 4660-004:2019
EN 4660-004:2019 (E)
4.2 Module description
A module consists of an enclosed component mounting area, a connector and an insertion extraction
device. The module shall have the following attributes:
 Provision for the protection of electronic devices, contained within the CFM, from the typical
environment requirements identified in the Clause 7, both during use and during handling, storage
and transportation.
 Provision for a connector which mates with the backplane assembly and provides all power and
data links to the rest of the avionics system.
 Provision for a keying method to positively bulk the incorrect insertion of any CFM into a rack and
to ensure that an incorrectly fitted CFM shall be prevented from making any electrical connection.
 Provision for a mechanism that retains the module within the rack under the mechanical and
environmental conditions specified herein and yet allows for easy insertion and removal of the
module.
 Provision for a cooling interface that provides for the removal of heat from the CFM.
 Provision for easy identification.
4.3 Module physical specification
4.3.1 Module envelope: height, length, width
The module envelope comprises the IED, the cassette and the connector. The principle dimensions for
the cassette are as shown in Figure 3.
For the detailed specification of Modules proven Standards shall be applied. These Standards are:
ARINC 650 Integrated Modular Avionics packaging;
ARINC 836 Modular rack Principles;
VPX/VITA 46.
Furthermore upcoming future specifications of the technology project PRIMAE (Packaging of Future
Integrated Modular Electronics) shall be applicable.
Detailed Module dimensions are given in the above addressed Standards.
12

---------------------- Page: 14 ----------------------
SIST EN 4660-004:2019
EN 4660-004:2019 (E)

Key
1 Length + Connector 4 Max. Area for Insertion/Extraction Device
2 Height 5 Connector
3 Length 6 Width
Figure 3 — CFM dimensions generic view
4.3.2 Module distortion
All warp, twist and surface contour tolerance shall not violate the module envelope defined in 4.3.1.
4.3.3 Module mass
This Standard does not specify module mass requirements.
NOTE The module construction should aim to minimise the total weight of the module.
4.3.4 Module insertion and extraction
The modules shall be able to be installed and removed from the rack without the need for special tools
nor for manual adjustment of the module once installed in order for it to function.
It shall also be possible to perform maintenance in the flight line environment (temperature, humidity
etc.). Maintenance shall be possible whilst wearing Nuclear, Biological and Chemical (NBC) protective
clothing.
4.3.5 Electrical safety
Modules containing hazardous voltage shall have exposed surfaces connected to the safety ground.
13

---------------------- Page: 15 ----------------------
SIST EN 4660-004:2019
EN 4660-004:2019 (E)
4.3.6 Materials
4.3.6.1 Use of flammable materials
The equipment shall be designed/constructed from materials that do not support combustion.
No material used in the construction of the module shall constitute a fire hazard.
Under condition of overheating and when exposed to fire no harmful concentrations of noxious
products or explosive gases shall emanate.
4.3.6.2 Finishes and protective treatments
4.3.6.2.1 General
There shall be no sharp edges or other imperfections which could cause injuries during transport or
maintenance.
Equipment metal parts including spares shall be either inherently resistant to or adequately protected
against the corrosive actions to which the equipment may be subjected when in storage or during
normal service life, as detailed in the appropriate environmental standard.
All materials used in the construction of the module shall be fungus inert or protected against fungal
growth.
No device containing mercury or its compounds shall be used, in any state, in the construction of the
module. The module shall not be exposed to any such material during testing.
4.3.6.2.2 Use of compatible materials
Dissimilar metals shall not be used in intimate contact unless suitably protected against electrolytic
corrosion.
4.3.6.2.3 Anodic treatment and plating
Copper and copper composite frames may be electroless nickel plated in accordance with MIL-C-26074,
class 1, grade A.
Aluminium, aluminium alloy and aluminium composite parts shall receive protective treatments in
accordance with the following Table 1:
14

---------------------- Page: 16 ----------------------
SIST EN 4660-004:2019
EN 4660-004:2019 (E)
Table 1 — Allowed aluminium protective treatments
European
PROCESS U.S. SPEC. U.K. SPEC. REMARKS
standard
Chemical
MIL-C-5541
chromating by EN 2437 DEF STAN 03-18 Electrically conductive
CLASS 1A
immersion
Chemical Local repair of damaged
chromating by EN 2437 MIL-C-81706 DEF-STAN 03-18 anodic and chromate
swab or brush films
Chromic acid Unpainted parts shall
EN 2101 MIL-A-8625 TYPE I DEF STAN 03-24
anodise be sealed
Close tolerance parts
Sulphuric acid
EN 2284 MIL-A-8625 TYPE II DEF STAN 03-25 which cannot be
anodise
painted
Sulphuric acid MIL-A-8625 TYPE II
EN 2284 DEF STAN 03-25 Colour to be specified
anodise dyed CLASS 2
Normal thickness
50-75um. Other
Sulphuric acid
EN 2284 MIL-A-8625 TYPE III BS 5599 thickness to be
hard anodise
specified, reduces
fatigue strength.

4.3.7 Module Identification
4.3.7.1 General
The module shall be identified and marked with appropriate identifiers as specified herein.
4.3.7.2 Module key code
A symbol key code, assigned to each module type, shall be marked on the module header. The marking
shall be located at the header end closest to Side C of the cassette. The standardisation body is
responsible for the generation of an approved code.
The key code shall also be printed on the component area of the module such that when the cover,
insertion extraction device and connector are removed the module type is still identifiable. The key
code shall also be marked on each module cover.
4.3.7.3 Module part number
The module part number shall be marked as specified, on a visible part of the connector shell.
All standard module part numbers will be assigned by the standardisation body, the module part
number shall be made up of:
Detail Detail
Detail
Specification Specification Environmental Specification Specification
Specification
Type Number Class Revision Amendment
Number
Letter Number
M xxxxx /xxx −x x (x)
15

---------------------- Page: 17 ----------------------
SIST EN 4660-004:2019
EN 4660-004:2019 (E)

For the original CFM, the detail specification revision letter and amendment number shall be left blank.
4.3.7.4 Module certification mark
All CFMs which meet the requirements of a detailed specification, shall carry the appropriate
certification mark on the module header.
4.3.7.5 Module name and type
Each module shall have its name and type marked as specified, on the connector shell or frame. The
name marked on the module shall agree with the name in the title of the detailed specification, however
abbreviations in accordance with that specification are permissible. The standardisation body is
responsible for the generation of an approved name.
4.3.7.6 Vendor's module identification
Each module shall be marked on the module header with either the vendor's identification code or
vendor's name. The vendor's code, if utilised, shall be a numerical code determined by the
standardisation body. The vendor's code shall be marked on each module as specified. No other module
vendor's part number shall be marked on the module.
4.3.7.7 Module serial number
Each module shall have a serial number including the vendor's designation as specified. The serial
number shall be located on the top surface of the header used for marking the key code. The serial
number shall consist of a number of digits with significant digits prefixed with zeros, as required. The
serial number shall be affixed to the module prior to electrical acceptance tests.
4.3.7.8 Module date code
Each module shall be marked as specified, with a six digit date code on the module header, designating
the week and year of manufacture. The first four digits of the code shall indicate the year of
manufacture and the remaining two digits shall indicate the calendar week. When the number of the
week is a single digit, it shall XXX.
4.4 Module physical interface — connector
4.4.1 General
This subclause defines the part of the Module Physical Interface (MPI) Specification associated to the
module connector. It defines the interface that will mate to the IMA rack and the backplane connector
part defined in Clause 6. The module connector shall provide the following features:
 inserts and contacts to provide optical, electrical and power supply connections, within the same
shell;
 connector keying and polarisation;
 all mechanisms for connector and module alignment, guide pins, mechanical support and earth
bonding;
 blind mate (i. e. allowing insertion and mating based only on mechanical guidance).
16

---------------------- Page: 18 ----------------------
SIST EN 4660-004:2019
EN 4660-004:2019 (E)
 Applicable Connector Standards are:
 ARINC;
 EN 4165;
 MIL-DTL.
4.4.2 Connector shell dimensions
The connector shell outline shall be as defined in the above standards.
4.4.3 Module connector shell location
The connector shell shall be rigidly mounted on the module as shown in Figure 4 such that no part of
the connector protrudes beyond the Side A and Side B surfaces of the module.
Any “float” required between the modules and the backplane at the connector shells shall be provided
in the backplane part.
4.4.4 Connector cavities, inserts, ferrules and contacts
4.4.4.1 General
The connector shall incorporate three identical cavities. Each cavity shall be capable of containing any
one of the following, but not limited to, insert types:
 “Guided Optical” - Providing 4 MT fibre optic ferrules, each with 4, 8 or 12 fibre optic contacts;
 “Electrical - Small signal” - This insert will provide 40 size 22 electrical signal contacts;
 “Electrical - Power” This insert will provide 8 size 16 electrical power contacts.
The Electrical Power contact arrangement shall allow “make last/break first” operation when the
module is respectively removed from or inserted into the rack.
4.4.4.2 Identification
The connector interface and insert shall be as defined in Figure 4.
17

---------------------- Page: 19 ----------------------
SIST EN 4660-004:2019
EN 4660-004:2019 (E)
Dimensions in millimetres

Guided Optical Insert Electrical – Signal Insert Electrical – Power Insert
NOTE Viewed from outside module, lowest numbered contact is towards Side C of the cassette.
Figure 4 — Preferred Contact Identification
4.4.4.3 Insert allocation
The mix of connector inserts in the connector shell shall be defined by the System Design Specification.
Examples (Informative) include the following:
 High density optical:
— Cavity A: up to 48 guided optical contacts;
— Cavity B: up to 48 guided optical contacts;
— Cavity C: electrical power insert.
 General purpose:
— Cavity A: up to 48 guided optical contacts;
— Cavity B: spare;
— Cavity C: electrical power insert.
 Power:
— Cavity A: up to 48 guided optical contacts;
— Cavity B: electrical p
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.