Industrial communication networks - High availability automation networks - Part 3: Parallel Redundancy Protocol (PRP) and High-availability Seamless Redundancy (HSR) (IEC 62439-3:2021)

The IEC 62439 series is applicable to high-availability automation networks based on the
Ethernet technology.
This document:
• specifies PRP and HSR as two related redundancy protocols designed to provide
seamless recovery in case of single failure of an inter-bridge link or bridge in the network,
which are based on the same scheme: parallel transmission of duplicated information;
• specifies the operation of the precision time protocol (PTP) in networks that implement the
two redundancy protocols (Annex A);
• specifies PTP profiles with performance suitable for power utilty automation (Annex B) and
industrial automation (Annex C);
• includes for better understanding a tutorial (Annex D) on the PTP features effectively used
in high-availability automation networks;
• includes a management information base for PTP (Annex E);
• defines a conformance test suite for the above protocols (Annex F).

Industrielle Kommunikationsnetze - Hochverfügbare Automatisierungsnetze - Teil 3: Parallelredundanz-Protokoll (PRP) und nahtloser Hochverfügbarkeits-Ring (HSR) (IEC 62439-3:2021)

Réseaux de communication industriels – Réseaux d'automatisme à haute disponibilité – Partie 3: Protocole de redondance en parallèle (PRP) et redondance transparente de haute disponibilité (HSR) (IEC 62439-3:2021)

IEC 62469-3:2021 spécifie deux protocoles de redondance associés qui assurent une commutation transparente avec un temps de reprise nul en cas de défaillance d'un élément de réseau:
• le protocole de redondance en parallèle PRP (Parallel Redundancy Protocol) qui permet d'associer des nœuds à deux réseaux tout en permettant d'associer des nœuds à un seul réseau; et
• la redondance transparente de haute disponibilité HSR (High-availability Seamless Redundancy) qui permet de lier des nœuds à deux ports dans un anneau ou des nœuds à plusieurs ports dans un réseau maillé.

Industrijska komunikacijska omrežja - Omrežja za avtomatizacijo z visoko razpoložljivostjo - 3. del: Protokol vzporedne redundance (PRP) in brezprehodna zanka z visoko razpoložljivostjo (HSR) (IEC 62439-3:2021)

Skupina standardov IEC 62439 se uporablja za avtomatizacijska omrežja z visoko razpoložljivostjo, ki temeljijo na tehnologiji Ethernet. Ta dokument: • določa PRP in HSR kot dva sorodna protokola redundance, zasnovana za zagotavljanje brezhibne obnovitve v primeru posamezne okvare medmostne povezave ali mostu v omrežju, ki temeljita na isti shemi: vzporedni prenos podvojenih informacij; • določa delovanje protokola za natančen čas (PTP) v omrežjih, ki izvajajo dva protokola redundance (dodatek A); • določa profile PTP z zmogljivostjo, primerno za avtomatizacijo elektroenergetskih podjetij (dodatek B) in industrijsko avtomatizacijo (dodatek C); • za boljše razumevanje vključuje vadnico (dodatek D) o funkcijah PTP, ki se učinkovito uporabljajo v omrežjih za avtomatizacijo visoke razpoložljivosti; • vključuje zbirko informacij glede upravljanja za PTP (dodatek E); • opredeljuje nabor preskusov skladnosti za zgornje protokole (dodatek F).

General Information

Status
Published
Public Enquiry End Date
24-May-2020
Publication Date
03-May-2022
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
17-Feb-2022
Due Date
24-Apr-2022
Completion Date
04-May-2022

Relations

Buy Standard

Standard
EN IEC 62439-3:2022 - BARVE. Del standarda IEC je tudi zip (IEC_62439-3.MIB.2021A1.fullFDIS)
English language
249 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Draft
prEN IEC 62439-3:2020
English language
201 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)

SLOVENSKI STANDARD
SIST EN IEC 62439-3:2022
01-junij-2022
Nadomešča:
SIST EN IEC 62439-3:2018
Industrijska komunikacijska omrežja - Omrežja za avtomatizacijo z visoko
razpoložljivostjo - 3. del: Protokol vzporedne redundance (PRP) in brezprehodna
zanka z visoko razpoložljivostjo (HSR) (IEC 62439-3:2021)
Industrial communication networks - High availability automation networks - Part 3:
Parallel Redundancy Protocol (PRP) and High-availability Seamless Redundancy (HSR)
(IEC 62439-3:2021)
Industrielle Kommunikationsnetze - Hochverfügbare Automatisierungsnetze - Teil 3:
Parallelredundanz-Protokoll (PRP) und nahtloser Hochverfügbarkeits-Ring (HSR) (IEC
62439-3:2021)
Réseaux de communication industriels Réseaux d'automatisme à haute disponibilité
Partie 3: Protocole de redondance en parallèle (PRP) et redondance transparente de
haute disponibilité (HSR) (IEC 62439-3:2021)
Ta slovenski standard je istoveten z: EN IEC 62439-3:2022
ICS:
25.040.01 Sistemi za avtomatizacijo v Industrial automation
industriji na splošno systems in general
35.110 Omreževanje Networking
SIST EN IEC 62439-3:2022 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
SIST EN IEC 62439-3:2022

---------------------- Page: 2 ----------------------
SIST EN IEC 62439-3:2022


EUROPEAN STANDARD EN IEC 62439-3

NORME EUROPÉENNE

EUROPÄISCHE NORM February 2022
ICS 25.040.40; 35.100.05 Supersedes EN IEC 62439-3:2018 and all of its
amendments and corrigenda (if any)
English Version
Industrial communication networks - High availability automation
networks - Part 3: Parallel Redundancy Protocol (PRP) and
High-availability Seamless Redundancy (HSR)
(IEC 62439-3:2021)
Réseaux de communication industriels - Réseaux de haute Industrielle Kommunikationsnetze - Hochverfügbare
disponibilité pour l'automatisation - Partie 3: Protocole de Automatisierungsnetze - Teil 3: Parallelredundanz-Protokoll
redondance en parallèle (PRP) et redondance transparente (PRP) und nahtloser Hochverfügbarkeits-Ring (HSR)
de haute disponibilité (HSR) (IEC 62439-3:2021)
(IEC 62439-3:2021)
This European Standard was approved by CENELEC on 2022-01-19. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.
CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the
Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and the United Kingdom.


European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2022 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.
 Ref. No. EN IEC 62439-3:2022 E

---------------------- Page: 3 ----------------------
SIST EN IEC 62439-3:2022
EN IEC 62439-3:2022 (E)
European foreword
The text of document 65C/1120/FDIS, future edition 4 of IEC 62439-3, prepared by SC 65C "Industrial
networks" of IEC/TC 65 "Industrial-process measurement, control and automation" was submitted to
the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 62439-3:2022.
The following dates are fixed:
• latest date by which the document has to be implemented at national (dop) 2022-10-19
level by publication of an identical national standard or by endorsement
• latest date by which the national standards conflicting with the (dow) 2025-01-19
document have to be withdrawn
This document supersedes EN IEC 62439-3:2018 and all of its amendments and corrigenda (if any).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.
Any feedback and questions on this document should be directed to the users’ national committee. A
complete listing of these bodies can be found on the CENELEC website.
Endorsement notice
The text of the International Standard IEC 62439-3:2021 was approved by CENELEC as a European
Standard without any modification.
In the official version, for Bibliography, the following notes have to be added for the standards
indicated:
IEC 61784-1 NOTE Harmonized as EN IEC 61784-1
IEC 61784-2 NOTE Harmonized as EN IEC 61784-2
IEC 61850 (series) NOTE Harmonized as EN 61850 (series)
IEC 61850-8-1 NOTE Harmonized as EN 61850-8-1
IEC 61850-9-2 NOTE Harmonized as EN 61850-9-2
IEC 62439-2 NOTE Harmonized as EN 62439-2
IEC 62439-3:2016 NOTE Harmonized as EN IEC 62439-3:2018 (not modified)
IEC 62439-4 NOTE Harmonized as EN 62439-4
IEC 62439-6 NOTE Harmonized as EN 62439-6
IEC 62439-7 NOTE Harmonized as EN 62439-7
2

---------------------- Page: 4 ----------------------
SIST EN IEC 62439-3:2022
EN IEC 62439-3:2022 (E)
Annex ZA
(normative)

Normative references to international publications
with their corresponding European publications
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.
NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the
relevant EN/HD applies.
NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available
here: www.cenelec.eu.
Publication Year Title EN/HD Year
IEC 60050-192 - International Electrotechnical - -
Vocabulary (IEV) - Part 192:
Dependability
IEC 61588 2021 Precision Clock Synchronization - -
Protocol for Networked Measurement
and Control Systems
IEC/TR 61850-90-4 2020 Communication networks and systems - -
for power utility automation - Part 90-4:
Network engineering guidelines
IEC 62439-1 - Industrial communication networks - EN 62439-1 -
High availability automation networks -
Part 1: General concepts and calculation
methods
ISO/IEC/IEEE 8802-3 2021 Telecommunications and exchange - -
between information technology
systems - Requirements for local and
metropolitan area networks - Part 3:
Standard for Ethernet
IEC/IEEE 61850-9-3 2016 Communication networks and systems - -
for power utility automation - Part 9-3:
Precision time protocol profile for power
utility automation
IEEE 802.1Q 2018 IEEE Standard for Local and - -
metropolitan area networks – Bridges
and Bridged Network
IETF RFC 768 - User Datagram Protocol (UDP) [online]. - -
August 1980.
IETF RFC 791 - Internet Protocol (IP) [online]. - -
September 1981.
IETF RFC 792 - Internet Control Message Protocol - -
[online]. September 1981.
3

---------------------- Page: 5 ----------------------
SIST EN IEC 62439-3:2022
EN IEC 62439-3:2022 (E)
Publication Year Title EN/HD Year
IETF RFC 793 - Transmission Control Protocol [online]. - -
September 1981.
IETF RFC 826 - Ethernet Address Resolution Protocol - -
[online]. November 1982.
IETF RFC 2578 - Structure of Management Information - -
Version 2 (SMIv2) [online]. April 1999.
IETF RFC 3418 - Structure of Management Information - -
Version 2 (SMIv2) [online]. December
2002.


4

---------------------- Page: 6 ----------------------
SIST EN IEC 62439-3:2022




IEC 62439-3

®


Edition 4.0 2021-12




INTERNATIONAL



STANDARD




NORME


INTERNATIONALE
colour

inside










Industrial communication networks – High availability automation networks –

Part 3: Parallel Redundancy Protocol (PRP) and High-availability Seamless

Redundancy (HSR)



Réseaux de communication industriels – Réseaux de haute disponibilité pour

l'automatisation –


Partie 3: Protocole de redondance en parallèle (PRP) et redondance

transparente de haute disponibilité (HSR)












INTERNATIONAL

ELECTROTECHNICAL

COMMISSION


COMMISSION

ELECTROTECHNIQUE


INTERNATIONALE




ICS 25.040.40; 35.100.05 ISBN 978-2-8322-1059-5




Warning! Make sure that you obtained this publication from an authorized distributor.

Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

® Registered trademark of the International Electrotechnical Commission
Marque déposée de la Commission Electrotechnique Internationale

---------------------- Page: 7 ----------------------
SIST EN IEC 62439-3:2022
– 2 – IEC 62439-3:2021 © IEC 2021
CONTENTS
FOREWORD . 10
INTRODUCTION . 13
0.1 General . 13
0.2 Patent declaration . 13
1 Scope . 15
1.1 General . 15
1.2 Code component distribution . 15
2 Normative references . 16
3 Terms, definitions, abbreviated terms, and conventions . 17
3.1 Terms and definitions . 17
3.2 Abbreviated terms . 19
3.3 Conventions . 20
4 Parallel Redundancy Protocol (PRP) . 20
4.1 PRP principle of operation . 20
4.1.1 PRP network topology . 20
4.1.2 PRP LANs with linear or bus topology . 22
4.1.3 PRP LANs with ring topology . 22
4.1.4 DANP node structure . 23
4.1.5 PRP attachment of singly attached nodes . 24
4.1.6 Compatibility between singly and doubly attached nodes . 25
4.1.7 Network management . 25
4.1.8 Implication on application . 25
4.1.9 Transition to a single-thread network . 26
4.1.10 Duplicate handling . 26
4.1.11 Network supervision . 31
4.1.12 Redundancy management interface . 31
4.2 PRP protocol specifications . 32
4.2.1 Installation, configuration and repair guidelines . 32
4.2.2 Unicast MAC addresses . 32
4.2.3 Multicast MAC addresses . 32
4.2.4 IP addresses . 33
4.2.5 Node specifications . 33
4.2.6 Duplicate Accept mode (testing only) . 33
4.2.7 Duplicate Discard mode . 34
4.3 PRP_Supervision frame . 38
4.3.1 PRP_Supervision frame format . 38
4.3.2 PRP_Supervision frame contents . 40
4.3.3 PRP_Supervision frame for RedBox . 41
4.3.4 Bridging node (deprecated) . 41
4.4 Constants . 42
4.5 PRP layer management entity (LME) . 42
5 High-availability Seamless Redundancy (HSR) . 42
5.1 HSR objectives . 42
5.2 HSR principle of operation . 43
5.2.1 Basic operation with a ring topology . 43
5.2.2 HSR connection to other networks . 45

---------------------- Page: 8 ----------------------
SIST EN IEC 62439-3:2022
IEC 62439-3:2021 © IEC 2021 – 3 –
5.2.3 DANH node structure . 57
5.2.4 RedBox structure . 58
5.3 HSR protocol specifications . 59
5.3.1 HSR layout . 59
5.3.2 HSR operation . 59
5.3.3 DANH sending from its link layer interface . 61
5.3.4 DANH receiving from an HSR port . 62
5.3.5 DANH forwarding rules . 62
5.3.6 HSR Class of Service . 64
5.3.7 HSR clock synchronization . 64
5.3.8 Deterministic transmission delay and jitter . 64
5.4 HSR RedBox specifications . 64
5.4.1 RedBox properties . 64
5.4.2 RedBox receiving from port C (interlink) . 65
5.4.3 RedBox receiving from port A or port B (HSR ring) . 67
5.4.4 RedBox receiving from its link layer interface (local) . 69
5.4.5 Redbox ProxyNodeTable handling . 69
5.4.6 RedBox CoS . 69
5.4.7 RedBox clock synchronization . 69
5.4.8 RedBox medium access. 69
5.5 QuadBox specification . 70
5.6 Duplicate Discard method . 70
5.7 Frame format for HSR . 70
5.7.1 Frame format for all frames. 70
5.7.2 HSR_Supervision frame . 71
5.8 HSR constants . 74
5.9 HSR layer management entity (LME) . 75
6 Protocol Implementation Conformance Statement (PICS) . 77
7 PRP/HSR Management Information Base (MIB) . 79
Annex A (normative) Synchronization of clocks over redundant paths . 94
A.1 Overview. 94
A.2 PRP mapping to PTP . 94
A.2.1 Particular operation of PRP for PTP messages . 94
A.2.2 Scenarios and device roles . 96
A.2.3 Attachment to redundant LANs by a BC . 98
A.2.4 Attachment to redundant LANs by doubly attached clocks . 98
A.2.5 Specifications of DANP as DAC . 102
A.2.6 PRP-SAN RedBoxes for PTP . 103
A.3 HSR Mapping to PTP . 123
A.3.1 HSR messages and other messages . 123
A.3.2 HSR operation with PTP messages . 123
A.3.3 HSR with redundant master clocks . 125
A.3.4 HSR timing diagram for PTP messages . 126
A.3.5 HSR nodes specifications . 127
A.4 HSR RedBoxes for PTP . 129
A.4.1 HSR-SAN RedBox . 129
A.4.2 HSR-PRP RedBox connection by BC . 130
A.4.3 HSR-PRP RedBox connection by TC . 132
A.4.4 HSR to HSR connection by QuadBoxes . 134

---------------------- Page: 9 ----------------------
SIST EN IEC 62439-3:2022
– 4 – IEC 62439-3:2021 © IEC 2021
A.5 Doubly attached clock specification . 135
A.5.1 State machine . 135
A.5.2 Supervision of the port . 138
A.5.3 BMCA for paired ports . 139
A.5.4 Selection of the port state . 140
A.6 PTP datasets for high availability . 140
A.6.1 General . 140
A.6.2 Data types . 140
A.6.3 Datasets for OC or BC . 141
A.6.4 Datasets for TCs. 149
Annex B (normative) PTP profile for Power Utility Automation (PUP) – Redundant

clock attachment . 150
B.1 Application domain. 150
B.2 PTP profile specification . 150
B.3 Specifications . 150
B.4 Redundant clock attachment . 150
Annex C (normative) PTP industry profiles for high-availability automation networks . 151
C.1 Application domain. 151
C.2 PTP profile specification . 151
C.3 Clock types . 152
C.4 Protocol specification common . 152
C.4.1 Base protocol . 152
C.4.2 Version control . 152
C.4.3 Time scale . 153
C.4.4 BMCA . 153
C.4.5 Time correction mechanism . 153
C.4.6 Management . 153
C.4.7 1 PPS support . 153
C.4.8 Leap second transition . 153
C.4.9 Use of port number . 153
C.4.10 Time distribution security . 154
C.5 Protocol specification for L3E2E industry profile . 154
C.5.1 Base protocol . 154
C.5.2 Multicast address. 154
C.5.3 Delay calculation mechanism . 154
C.5.4 Sync message padding . 154
C.6 Protocol specification for L2P2P industry profile . 155
C.6.1 Base protocol . 155
C.6.2 Delay measurement mechanism . 155
C.6.3 Consideration of media converters . 155
C.7 Common timing requirements for L2P2P and L3E2E . 155
C.7.1 Measurement conditions . 155
C.7.2 Network time inaccuracy . 155
C.7.3 Response to time step changes . 156
C.7.4 Requirements for GCs . 156
C.7.5 Requirements for TCs . 158
C.7.6 Requirements for BCs . 158
C.8 Requirements for media converters . 161
C.9 Requirements for links . 161

---------------------- Page: 10 ----------------------
SIST EN IEC 62439-3:2022
IEC 62439-3:2021 © IEC 2021 – 5 –
C.10 Network engineering . 161
C.11 Default settings . 162
C.12 Handling of doubly attached clocks . 163
C.13 Protocol Implementation Conformance Statement (PICS) for PTP . 164
C.13.1 PICS conventions . 164
C.13.2 PICS for PTP . 164
C.14 Recommendations for time representation . 166
C.14.1 Usage of flags in TimePropertyDS . 166
C.14.2 UTC leap second transition . 167
C.14.3 ALTERNATE_TIME_OFFSET_INDICATOR_TLV . 168
Annex D (informative) Precision Time Protocol tutorial for the PTP Industrial profile . 172
D.1 Objective . 172
D.2 Precision and accuracy . 172
D.3 PTP clock types . 173
D.4 PTP main options . 175
D.5 Layer 2 and layer 3 communication . 176
D.6 1-step and 2-step correction . 176
D.6.1 Time correction in TCs . 176
D.6.2 2-step to 1-step translation . 177
D.7 End-to-End link delay measurement . 179
D.7.1 General method . 179
D.7.2 End-to-end link delay measurement with 1-step clock correction . 179
D.7.3 End-to-end link delay measurement with 2-step clock correction . 180
D.7.4 End-to-end link delay calculation by Delay_Req – Delay_Resp . 181
D.7.5 Consideration of media converters in end-to-end delay calculation . 181
D.8 Peer-to-peer link delay calculation . 182
D.8.1 Peer-to-peer link delay calculation with 1-step correction . 182
D.8.2 Peer-to-peer link delay calculation with 2-step correction . 183
D.8.3 Consideration of media converters in peer delay calculation . 184
Annex E (normative) Management Information base for singly and doubly attached
clocks . 186
Annex F (normative) Conformance testing for PRP and HSR and handling of
redundancy in PIP and PUP .
...

SLOVENSKI STANDARD
oSIST prEN IEC 62439-3:2020
01-maj-2020
Industrijska komunikacijska omrežja - Avtomatizacija omrežja z visoko
razpoložljivostjo - 3. del: Protokol vzporedne redundance (PRP) in brezprehodna
zanka z visoko razpoložljivostjo (HSR)
Industrial communication networks - High availability automation networks - Part 3:
Parallel Redundancy Protocol (PRP) and High-availability Seamless Redundancy (HSR)
Industrielle Kommunikationsnetze - Hochverfügbare Automatisierungsnetze - Teil 3:
Parallelredundanz-Protokoll (PRP) und nahtloser Hochverfügbarkeits-Ring (HSR)
Réseaux de communication industriels Réseaux d'automatisme à haute disponibilité
Partie 3: Protocole de redondance en parallèle (PRP) et redondance transparente de
haute disponibilité (HSR)
Ta slovenski standard je istoveten z: prEN IEC 62439-3:2020
ICS:
25.040.01 Sistemi za avtomatizacijo v Industrial automation
industriji na splošno systems in general
35.110 Omreževanje Networking
oSIST prEN IEC 62439-3:2020 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
oSIST prEN IEC 62439-3:2020

---------------------- Page: 2 ----------------------
oSIST prEN IEC 62439-3:2020
65C/998/CDV

COMMITTEE DRAFT FOR VOTE (CDV)
PROJECT NUMBER:
IEC 62439-3 ED4
DATE OF CIRCULATION: CLOSING DATE FOR VOTING:
2020-03-06 2020-05-29
SUPERSEDES DOCUMENTS:
65C/958/CD,65C/972/CC

IEC SC 65C : INDUSTRIAL NETWORKS
SECRETARIAT: SECRETARY:
France Ms Valérie DEMASSIEUX
OF INTEREST TO THE FOLLOWING COMMITTEES: PROPOSED HORIZONTAL STANDARD:

SC 22G,TC 57
Other TC/SCs are requested to indicate their interest, if
any, in this CDV to the secretary.
FUNCTIONS CONCERNED:
EMC ENVIRONMENT QUALITY ASSURANCE SAFETY
SUBMITTED FOR CENELEC PARALLEL VOTING NOT SUBMITTED FOR CENELEC PARALLEL VOTING
Attention IEC-CENELEC parallel voting
The attention of IEC National Committees, members of
CENELEC, is drawn to the fact that this Committee Draft
for Vote (CDV) is submitted for parallel voting.
The CENELEC members are invited to vote through the
CENELEC online voting system.

This document is still under study and subject to change. It should not be used for reference purposes.
Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of
which they are aware and to provide supporting documentation.

TITLE:
Industrial communication networks - High availability automation networks - Part 3: Parallel
Redundancy Protocol (PRP) and High-availability Seamless Redundancy (HSR)

PROPOSED STABILITY DATE: 2025

NOTE FROM TC/SC OFFICERS:
NC comments will be addressed during the SC65C/WG15 meeting scheduled on June 8th-10h, 2020 in
Baden (Switzerland). Corresponding meeting notice will be provided in due time by the convenor.

Copyright © 2020 International Electrotechnical Commission, IEC. All rights reserved. It is permitted to download this
electronic file, to make a copy and to print out the content for the sole purpose of preparing National Committee positions.
You may not copy or "mirror" the file or printed version of the document, or any part of it, for any other purpose without
permission in writing from IEC.

---------------------- Page: 3 ----------------------
oSIST prEN IEC 62439-3:2020
IEC CDV 62439-3  IEC 2019 – 3 – 65C/998/CDV
1
2 CONTENTS
3
4 FOREWORD . 9
5 INTRODUCTION . 11
6 0.1General . 11
7 0.2Changes with respect to the previous edition . 11
8 0.3Patent declaration . 12
9 1 Scope . 13
10 2 Normative references . 13
11 3 Terms, definitions, abbreviations, acronyms, and conventions . 14
12 3.1 Terms and definitions. 14
13 3.2 Abbreviations and acronyms . 16
14 3.3 Conventions . 17
15 4 Parallel Redundancy Protocol (PRP) . 17
16 4.1 PRP principle of operation . 17
17 4.1.1 PRP network topology . 17
18 4.1.2 PRP LANs with linear or bus topology. 18
19 4.1.3 PRP LANs with ring topology . 19
20 4.1.4 DANP node structure . 19
21 4.1.5 PRP attachment of singly attached nodes . 20
22 4.1.6 Compatibility between singly and doubly attached nodes . 20
23 4.1.7 Network management . 20
24 4.1.8 Implication on application . 21
25 4.1.9 Transition to non-redundant networks . 21
26 4.1.10 Duplicate handling . 21
27 4.1.11 Network supervision . 26
28 4.1.12 Redundancy management interface . 26
29 4.2 PRP protocol specifications . 26
30 4.2.1 Installation, configuration and repair guidelines . 26
31 4.2.2 Unicast MAC addresses. 27
32 4.2.3 Multicast MAC addresses . 27
33 4.2.4 IP addresses . 27
34 4.2.5 Nodes . 27
35 4.2.6 Duplicate Accept mode (testing only) . 28
36 4.2.7 Duplicate Discard mode . 28
37 4.3 PRP_Supervision frame . 32
38 4.3.1 PRP_Supervision frame format . 32
39 4.3.2 PRP_Supervision frame contents. 33
40 4.3.3 PRP_Supervision frame for RedBox . 34
41 4.3.4 Reception of a PRP_Supervision frame and NodesTable . 34
42 4.4 Bridging node (deprecated) . 35
43 4.5 Constants . 35
44 4.6 PRP layer management entity (LME) . 35
45 5 High-availability Seamless Redundancy (HSR) . 35
46 5.1 HSR objectives . 35
47 5.2 HSR principle of operation . 36
48 5.2.1 Basic operation with a ring topology . 36
49 5.2.2 DANH node structure . 37

---------------------- Page: 4 ----------------------
oSIST prEN IEC 62439-3:2020
65C/998/CDV – 4 – IEC CDV 62439-3  IEC 2020
50 5.2.3 Topology . 38
51 5.2.4 RedBox structure . 47
52 5.3 HSR node specifications . 49
53 5.3.1 HSR operation . 49
54 5.3.2 DANH receiving from its link layer interface . 50
55 5.3.3 DANH receiving from an HSR port . 51
56 5.3.4 DANH forwarding rules . 51
57 5.3.5 Class of Service . 52
58 5.3.6 Clock synchronization . 53
59 5.3.7 Deterministic transmission delay and jitter . 53
60 5.4 HSR RedBox specifications . 53
61 5.4.1 RedBox properties . 53
62 5.4.2 RedBox receiving from interlink . 53
63 5.4.3 RedBox forwarding on the ring . 55
64 5.4.4 RedBox receiving from an HSR port . 55
65 5.4.5 RedBox receiving from its link layer interface . 57
66 5.4.6 Redbox ProxyNodeTable handling . 57
67 5.4.7 RedBox CoS . 57
68 5.4.8 RedBox clock synchronization . 57
69 5.4.9 RedBox medium access . 58
70 5.5 QuadBox specification . 58
71 5.6 Duplicate Discard method . 58
72 5.7 Frame format for HSR . 58
73 5.7.1 Frame format for all frames . 58
74 5.7.2 HSR_Supervision frame. 59
75 5.8 HSR constants . 62
76 5.9 HSR layer management entity (LME) . 63
77 6 Protocol Implementation Conformance Statement (PICS) . 64
78 7 PRP/HSR Management Information Base (MIB) . 65
79 Annex A (normative) Clocks synchronization over redundant paths in IEC 62439-3 . 81
80 A.1 Overview . 81
81 A.2 Attachment to redundant LANs by a boundary clock . 81
82 A.3 Attachment to redundant LANs by doubly attached ordinary clocks . 82
83 A.4 PRP mapping to PTP . 84
84 A.4.1 Scenarios and device roles . 84
85 A.4.2 Operation in PRP . 85
86 A.4.3 Configuration specification. 86
87 A.4.4 Specifications of DANP as DAC . 87
88 A.4.5 Clock model of a RedBox for PTP . 87
89 A.5 HSR Mapping to PTP . 104
90 A.5.1 PTP traffic in HSR . 104
91 A.5.2 HSR nodes specifications . 106
92 A.5.3 Redundant clocks in HSR . 107
93 A.5.4 Attachment of an MC to an external LAN . 107
94 A.6 PRP to HSR Mapping . 108
95 A.6.1 Connection methods . 108
96 A.6.2 PRP-HSR connection by BC . 108
97 A.6.3 PRP-HSR connection by TCs. 109
98 A.7 Doubly attached clock model . 110
99 A.7.1 State machine . 110
100 A.7.2 Supervision of the port . 113

---------------------- Page: 5 ----------------------
oSIST prEN IEC 62439-3:2020
IEC CDV 62439-3  IEC 2019 – 5 – 65C/998/CDV
101 A.7.3 BMCA for paired ports . 113
102 A.7.4 Selection of the port state . 114
103 A.8 PTP datasets for high availability . 115
104 A.8.1 General . 115
105 A.8.2 Data types . 115
106 A.8.3 Datasets for ordinary or boundary clocks . 116
107 A.8.4 Object for transparent clocks . 120
108 Annex B (normative) PTP profile for Power Utility Automation (PUP) – Redundant
109 clock attachment . 123
110 B.1 Application domain . 123
111 B.2 PTP profile specification . 123
112 B.3 Redundant clock attachment . 123
113 Annex C (normative) PTP industry profiles for high-availability automation networks . 125
114 C.1 Application domain . 125
115 C.2 PTP profile specification . 125
116 C.3 Clock types . 125
117 C.4 Protocol specification common . 126
118 C.5 Protocol specification for L3E2E industry profile . 126
119 C.6 Protocol specification for L2P2P industry profile . 127
120 C.7 Common timing requirements for L2P2P and L3E2E . 127
121 C.7.1 Measurement conditions . 127
122 C.7.2 Network time inaccuracy . 127
123 C.7.3 Network elements . 128
124 C.7.4 Requirements for grandmasters . 128
125 C.7.5 Requirements for TCs . 129
126 C.7.6 Requirements for BCs. 129
127 C.7.7 Requirements for media converters . 130
128 C.7.8 Requirements for links . 130
129 C.8 Network engineering . 130
130 C.9 Default settings . 131
131 C.10 Handling of doubly attached clocks . 132
132 C.11 Protocol Implementation Conformance Statement (PICS) . 133
133 C.11.1 Conventions . 133
134 C.11.2 PICS . 133
135 C.12 Recommendations for time representation . 135
136 C.12.1 Usage of flags in TimePropertyDS . 135
137 C.12.2 UTC leap second transition . 136
138 C.12.3 ALTERNATE_TIME_OFFSET INDICATOR_TLV . 137
139 Annex D (informative) Precision Time Protocol tutorial for IEC 62439-3 . 140
140 D.1 Objective . 140
141 D.2 Precision and accuracy . 140
142 D.3 PTP clock types . 141
143 D.4 PTP main options. 143
144 D.5 Layer 2 and layer 3 communication . 143
145 D.6 1-step and 2-step correction . 143
146 D.6.1 Time correction in TCs. 143
147 D.6.2 2-step to 1-step translation . 145
148 D.7 End-To-End link delay measurement . 147
149 D.7.1 General method . 147
150 D.7.2 End-to-End link delay measurement with 1-step clock correction . 147
151 D.7.3 End-to-End link delay measurement with 2-step clock correction . 148

---------------------- Page: 6 ----------------------
oSIST prEN IEC 62439-3:2020
65C/998/CDV – 6 – IEC CDV 62439-3  IEC 2020
152 D.7.4 End-to-End link delay calculation by Delay_Req/Delay_Resp . 149
153 D.8 Peer-to-Peer link delay calculation . 149
154 D.8.1 Peer-to-Peer link delay calculation with 1-step correction . 149
155 D.8.2 Peer-to-Peer link delay calculation with 2-step correction . 150
156 D.8.3 Consideration of media converters in peer delay calculation . 151
157 Annex E (normative) Management Information base for singly and doubly attached
158 clocks . 153
159 Annex F (normative) Conformance testing for IEC 62439-3 . 180
160 F.1 General . 180
161 F.2 PRP conformance test . 180
162 F.2.1 PRP test set-up . 180
163 F.2.2 PRP test components . 181
164 F.2.3 Test for documentation and labelling . 181
165 F.2.4 Test for (unicast) IP addresses . 181
166 F.2.5 Test for configuration . 182
167 F.2.6 Test of DANP . 182
168 F.2.7 Test of PRP Redboxes . 185
169 F.2.8 Test for Management . 186
170 F.2.9 Test of DANP or RedBox for processing of PTP frames . 188
171 F.3 HSR conformance test . 191
172 F.3.1 HSR test set-up . 191
173 F.3.2 HSR test components . 192
174 F.3.3 Test for HSR documentation and labelling . 192
175 F.3.4 Test of DANH or RedBox for IP addresses . 193
176 F.3.5 Test of DANH for configuration . 193
177 F.3.6 Test of DANH . 193
178 F.3.7 Test of HSR RedBoxes . 196
179 F.3.8 Test of DANH or RedBox for Management . 197
180 F.3.9 Test of DANH or RedBox for processing of PTP frames . 199
181 Bibliography . 202
182
183 Figure 1 – PRP example of general redundant network . 18
184 Figure 2 – PRP example of redundant network as two LANs (bus topology) . 18
185 Figure 3 – PRP example of redundant ring with SANs and DANPs . 19
186 Figure 4 – PRP with two DANPs communicating . 19
187 Figure 5 – PRP RedBox, transition from single to double LAN . 21
188 Figure 6 – PRP frame extended by an RCT. 22
189 Figure 7 – PRP VLAN-tagged frame extended by an RCT . 23
190 Figure 8 – PRP padded frame closed by an RCT . 23
191 Figure 9 – Duplicate Discard algorithm boundaries . 24
192 Figure 10 – HSR example of ring configuration for multicast traffic . 36
193 Figure 11 – HSR example of ring configuration for unicast traffic . 37
194 Figure 12 – HSR structure of a DANH . 38
195 Figure 13 – HSR example of topology using two independent networks . 39
196 Figure 14 – HSR example of peer coupling of two rings . 40
197 Figure 15 – HSR example of connected rings . 41
198 Figure 16 – HSR example of coupling two redundant PRP LANs to a ring . 42
199 Figure 17 – HSR example of coupling from a ring node to redundant PRP LANs . 43

---------------------- Page: 7 ----------------------
oSIST prEN IEC 62439-3:2020
IEC CDV 62439-3  IEC 2019 – 7 – 65C/998/CDV
200 Figure 18 – HSR example of coupling from a ring to two PRP LANs . 44
201 Figure 19 – HSR example of coupling three rings to one PRP LAN . 45
202 Figure 20 – HSR example of meshed topology . 46
203 Figure 21 – HSR example of coupling an RSTP LAN to HSR by two bridges . 47
204 Figure 22 – HSR structure of a RedBox . 48
205 Figure 23 – HSR frame without a VLAN tag . 58
206 Figure 24 – HSR frame with VLAN tag . 59
207 Figure 25 – HSR node with management counters . 63
208 Figure 26 – HSR RedBox with management counters . 64
209 Figure A.1 – Doubly Attached Clock as BC (MCA is best master) . 81
210 Figure A.2 – Doubly Attached Clock when MCA is best master . 82
211 Figure A.3 – Doubly attached clocks when OC1 is best master . 83
212 Figure A.4 – Elements of PRP networks . 85
213 Figure A.5 – Connection of a master clock to an ordinary clock over PRP . 86
214 Figure A.6 – PRP RedBox as BCs (OC3 and BC7 are best masters) . 88
215 Figure A.7 – RedBox DABC clock model . 89
216 Figure A.8 – PRP RedBoxes as DABC with E2E – BC7 is master . 90
217 Figure A.9 – PRP RedBoxes as DABC with E2E – timing . 91
218 Figure A.10 – PRP RedBoxes as DABC with P2P – OC5 is best master . 92
219 Figure A.11 – PRP RedBoxes as DABC with P2P – timing . 93
220 Figure A.12 – PRP RedBox as DATC with E2E –signal flow . 94
221 Figure A.13 – PRP RedBox as DATC with E2E – timing . 96
222 Figure A.14 – PRP RedBox as DATC with P2P . 97
223 Figure A.15 – PRP RedBox as DATC with P2P – timing . 98
224 Figure A.16 – PRP RedBox as SLTC with E2E . 101
225 Figure A.17 – PRP RedBox as SLTC with E2E – timing . 102
226 Figure A.18 – PRP RedBox as SLTC with P2P .
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.