Petroleum industry and products - Determination of composition of refinery heating gas and calculation of carbon content and calorific value - Gas chromatography method

This draft European Standard defines a gas chromatographic analysis for the determination of the composition of fuel gases, as used in refinery heating gas. These results are used to calculate the carbon content and the lower calorific value.
With this gas chromatographic analysis, an overall of 23 refinery heating gas components are determined in concentrations as typically found in refineries (see Table 1 for further details).
Water is not analyzed. The results represent dry gases.
NOTE 1   Depending on the equipment used, there is a possibility to determine higher hydrocarbons as well.
NOTE 2   For the purposes of this draft European Standard, the terms "% (V/V)" is used to represent the volume fraction (φ).
IMPORTANT - This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations.

Mineralölindustrie und -produkte - Bestimmung der Zusammensetzung von Heizgas für Raffinerien und Berechnung des Kohlenstoffgehaltes und des Heizwertes - Gaschromatographisches Verfahren

Dieses Dokument legt eine gaschromatographische Analyse für die Bestimmung der Zusammensetzung von Brenngasen fest, wie sie in Raffinerieheizgasen verwendet werden. Die Ergebnisse werden zur Berechnung des Kohlenstoffgehaltes und des unteren Heizwertes verwendet.
Mit dieser gaschromatographischen Analyse werden insgesamt 23 Komponenten von Raffinerieheizgasen in Konzentrationen bestimmt, wie sie typischerweise in Raffinerien zu finden sind (siehe Tabelle 1 für weitere Informationen).
Wasser wird nicht analysiert. Die Ergebnisse beziehen sich auf trockene Gase.
ANMERKUNG 1   Je nach verwendeter Ausrüstung besteht die Möglichkeit, auch höhere Kohlenwasserstoffe zu bestimmen.
ANMERKUNG 2   Für die Zwecke dieses Dokuments wird zur Angabe des Volumenanteils (φ) einer Substanz der Ausdruck „% (V/V)“ verwendet.
WICHTIG — Dieses Dokument beansprucht nicht, alle damit verbundenen Sicherheitsprobleme zu behandeln. Es liegt in der Verantwortung des Anwenders dieses Dokuments, geeignete Maßnahmen für die Sicherheit und den Gesundheitsschutz festzulegen und die Geltung behördlicher Einschränkungen zu prüfen.

Industries et produits pétroliers - Détermination de la composition des gaz combustibles de raffinerie, de leur pouvoir calorifique et de leur teneur en carbone - Méthode par chromatographie en phase gazeuse

Le présent document définit une méthode d’analyse chromatographique gazeuse pour la détermination de la composition des gaz combustibles de raffineries. Les résultats obtenus sont utilisés pour calculer leur teneur en carbone ainsi que leur pouvoir calorifique inférieur.
Cette analyse chromatographique des gaz permet de déterminer 23 composants des gaz combustibles de raffineries au total, à des concentrations habituellement trouvées dans les raffineries (voir le Tableau 1 pour de plus amples détails).
L’eau n’est pas analysée. Les résultats représentent les gaz à l’état sec.
NOTE 1   Selon l’équipement utilisé, il est aussi possible de déterminer les hydrocarbures supérieurs.
NOTE 2   Pour les besoins du présent document, le terme “% (V/V)” est utilisé pour représenter la fraction volumique (φ).
IMPORTANT — Le présent document n'a pas la prétention d’aborder tous les problèmes de sécurité concernés par son usage. Il est de la responsabilité de l'utilisateur de ce document de prendre les mesures appropriées de sécurité et de santé et de déterminer l'applicabilité de restrictions réglementaires.

Naftna industrija in proizvodi - Določevanje sestave rafinerijskega plina za ogrevanje in izračunavanje vsebnosti ogljika in kalorične vrednosti - Plinska kromatografska metoda

Ta osnutek evropskega standarda določa analizo s plinsko kromatografijo za določevanje sestave gorivnih plinov, ki se uporabljajo pri rafinerijskem plinu za ogrevanje. Rezultati se uporabljajo za izračun vsebnosti ogljika in nižje kalorične vrednosti.
S to analizo s plinsko kromatografijo je določenih skupno 23 komponent rafinerijskega plina za ogrevanje v koncentracijah, ki so običajne za rafinerije (za dodatne podrobnosti glej preglednico 1).
Voda ni analizirana. Rezultati predstavljajo suhe pline.
OPOMBA 1:   Glede na uporabljeno opremo obstaja tudi možnost določitve višjih ogljikovodikov.
OPOMBA 2:   V tem osnutku evropskega standarda je uporabljena oznaka »% (V/V)«, ki označuje delež prostornine (φ).
POMEMBNO: Ta standard ne obravnava vseh varnostnih težav, ki se navezujejo na njegovo uporabo. Za vzpostavitev ustreznih varnostnih in zdravstvenih praks ter za določitev uporabnosti regulativnih omejitev je odgovoren uporabnik tega standarda.

General Information

Status
Published
Public Enquiry End Date
31-May-2021
Publication Date
09-Mar-2022
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
28-Feb-2022
Due Date
05-May-2022
Completion Date
10-Mar-2022

Relations

Buy Standard

Standard
EN 15984:2022 - BARVE
English language
23 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Draft
prEN 15984:2021 - BARVE
English language
23 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)

SLOVENSKI STANDARD
SIST EN 15984:2022
01-april-2022
Nadomešča:
SIST EN 15984:2017
Naftna industrija in proizvodi - Določevanje sestave rafinerijskega plina za
ogrevanje in izračunavanje vsebnosti ogljika in kalorične vrednosti - Plinska
kromatografska metoda
Petroleum industry and products - Determination of composition of refinery heating gas
and calculation of carbon content and calorific value - Gas chromatography method
Mineralölindustrie und -produkte - Bestimmung der Zusammensetzung von Heizgas für
Raffinerien und Berechnung des Kohlenstoffgehaltes und des Heizwertes -
Gaschromatographisches Verfahren
Industries et produits pétroliers - Détermination de la composition des gaz combustibles
de raffinerie, de leur pouvoir calorifique et de leur teneur en carbone - Méthode par
chromatographie en phase gazeuse
Ta slovenski standard je istoveten z: EN 15984:2022
ICS:
71.040.50 Fizikalnokemijske analitske Physicochemical methods of
metode analysis
75.160.30 Plinska goriva Gaseous fuels
SIST EN 15984:2022 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
SIST EN 15984:2022

---------------------- Page: 2 ----------------------
SIST EN 15984:2022


EN 15984
EUROPEAN STANDARD

NORME EUROPÉENNE

February 2022
EUROPÄISCHE NORM
ICS 75.160.30 Supersedes EN 15984:2017
English Version

Petroleum industry and products - Determination of
composition of refinery heating gas and calculation of
carbon content and calorific value - Gas chromatography
method
Industries et produits pétroliers - Détermination de la Mineralölindustrie und -produkte - Bestimmung der
composition des gaz combustibles de raffinerie, de leur Zusammensetzung von Heizgas für Raffinerien und
pouvoir calorifique et de leur teneur en carbone - Berechnung des Kohlenstoffgehaltes und des
Méthode par chromatographie en phase gazeuse Heizwertes - Gaschromatographisches Verfahren
This European Standard was approved by CEN on 24 December 2021.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.





EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2022 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 15984:2022 E
worldwide for CEN national Members.

---------------------- Page: 3 ----------------------
SIST EN 15984:2022
EN 15984:2022 (E)
Contents Page
European foreword . 3
1 Scope . 4
2 Normative references . 4
3 Terms and definitions . 4
4 Principle . 4
5 Reagents and materials . 6
5.1 Gases. . 6
5.2 Calibration sample. . 6
6 Apparatus . 6
7 Gas chromatographic analysis . 6
7.1 Analysis systems . 6
7.2 System configuration . 7
7.3 Columns . 7
8 Calibration . 7
8.1 General . 7
8.2 Absolute response factors . 8
8.3 Relative response factors . 8
9 Calculation . 9
9.1 General . 9
9.2 Calculation of the non-normalized mole fractions. 9
9.3 Validation of normalized composition (reference components) . 9
9.4 Calculation of carbon content . 10
9.5 Calculation of lower calorific value, on mass basis . 11
10 Expression of results . 11
11 Precision . 12
11.1 General . 12
11.2 Repeatability . 12
11.3 Reproducibility . 12
12 Test report . 12
Annex A (normative) Column combination . 13
Annex B (normative) Detector linearity check . 18
Annex C (informative) Calculation test data . 20
Annex D (normative) Data for calculation . 21
Annex E (informative) Precision estimates for the refinery gas composition . 22
Bibliography . 23
2

---------------------- Page: 4 ----------------------
SIST EN 15984:2022
EN 15984:2022 (E)
European foreword
This document (EN 15984:2022) has been prepared by Technical Committee CEN/TC 19 “Gaseous and
liquid fuels, lubricants and related products of petroleum, synthetic and biological origin”, the secretariat
of which is held by NEN.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by August 2022, and conflicting national standards shall be
withdrawn at the latest by August 2022.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document supersedes EN 15984:2017.
This revision contains a new informative Annex with estimated precision data for selected components
in refinery gas.
This document is based on a DIN Standard [5] with the same scope.
Any feedback and questions on this document should be directed to the users’ national standards body.
A complete listing of these bodies can be found on the CEN website.
According to the CEN-CENELEC Internal Regulations, the national standards organisations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia,
Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland,
Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North
Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United
Kingdom.
3

---------------------- Page: 5 ----------------------
SIST EN 15984:2022
EN 15984:2022 (E)
1 Scope
This document defines a gas chromatographic analysis for the determination of the composition of fuel
gases, as used in refinery heating gas. These results are used to calculate the carbon content and the lower
calorific value.
With this gas chromatographic analysis, an overall of 23 refinery heating gas components are determined
in concentrations as typically found in refineries (see Table 1 for further details).
Water is not analysed. The results represent dry gases.
NOTE 1 Depending on the equipment used, there is a possibility to determine higher hydrocarbons as well.
NOTE 2 For the purposes of this document, the terms “% (V/V)” is used to represent the volume fraction (φ).
IMPORTANT — This document does not purport to address all of the safety problems associated with its
use. It is the responsibility of the user of this document to establish appropriate safety and health
practices and determine the applicability of regulatory limitations.
2 Normative references
There are no normative references in this document.
3 Terms and definitions
No terms and definitions are listed in this document.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
• IEC Electropedia: available at https://www.electropedia.org/
• ISO Online browsing platform: available at https://www.iso.org/obp
4 Principle
This document defines a procedure that is used to determine all components that are present in a typical
refinery heating gas, as indicated in Table 1.
NOTE The composition range in which each component can be analyzed does depend on the actual sample
composition as higher amounts of a certain component can affect the detection range of other components eluting
close by. The general ranges which apply to all the individual components are:
— hydrocarbons from 0,01 (mol/100 mol) up to 100 (mol/100 mol);
— non-condensable gases from 0,02 (mol/100 mol) up to 100 (mol/100 mol);
— for hydrogen sulfide a range between 0,1 (mol/100 mol) up to 10 (mol/100 mol) has been found applicable.
Three different analysis systems are necessary; they may be built in three separate gas chromatographs,
or be integrated into one.
Depending on the configuration, hydrocarbons with more than five carbon atoms are reported as a sum
parameter. The composition of the refinery heating gas is used to calculate the carbon content and the
calorific value. A typical procedure is described hereafter. A configuration is acceptable when the
determination results in the precision as described in Clause 11.
4

---------------------- Page: 6 ----------------------
SIST EN 15984:2022
EN 15984:2022 (E)
Table 1 — Refinery heating gas components
Number Description Chemical formula
1 Hydrogen H
2
2 Oxygen/Argon O /Ar
2
3 Nitrogen N
2
4 Carbon monoxide CO
5 Carbon dioxide CO
2
6 Hydrogen sulfide H S
2
7 Methane CH
4
8 Ethane C H
2 6
9 Ethene C H
2 4
10 Ethyne (Acetylene) C H
2 2
11 Propane C H
3 8
12 Propene C H
3 6
13 Propyne (Methylacetylene) C H
3 4
14 Propadiene C H
3 4
15 iso-Butane C H
4 10
16 n-Butane C H
4 10
17 trans-2-Butene C H
4 8
18 1-Butene C H
4 8
19 2-Methyl-Propene C H
4 8
20 cis-2-Butene C H
4 8
21 1,3-Butadiene C H
4 6
22 iso-Pentane C H
5 12
23 n-Pentane C H
5 12
24 Other components with 5 or more Carbon atoms, excluding iso- and n-
Pentane (C )
5+
5

---------------------- Page: 7 ----------------------
SIST EN 15984:2022
EN 15984:2022 (E)
5 Reagents and materials
5.1 Gases.
5.1.1 Hydrogen, with a minimum purity of 99,995 % (V/V).
5.1.2 Helium, with a minimum purity of 99,995 % (V/V).
5.1.3 Nitrogen, with a minimum purity of 99,995 % (V/V).
5.1.4 Air, free of oil and water.
5.1.5 Argon, as alternative for analysis system 2, with a minimum purity of 99,995 % (V/V).
5.2 Calibration sample.
A certified reference gas mixture in concentrations that allow the determination of the necessary
response factors (see 8.1) and retention times is required.
6 Apparatus
6.1 Usual laboratory apparatus and glassware.
6.2 Gas chromatographic apparatus, consisting of at least three separation systems able to work
simultaneously in one gas chromatograph, with a Thermal Conductivity Detector (TCD) and Flame
Ionization Detector (FID) that should be available, and confirming to the requirements as given in
Clause 7.
7 Gas chromatographic analysis
7.1 Analysis systems
The gas chromatographic system, as recommended in Annex A, consist of the following three parts:
1) Analysis system 1
All components except hydrogen (see Table 1) are retained on a porous polymer and a molecular
sieve column and back flushed.
© © 1
NOTE HayeSep and Molsieve are examples of such commercially available columns .
Hydrogen is determined on a TCD with nitrogen (5.1.3) as the carrier gas (see Figure A.4).
2) Analysis system 2
The second analysis system separates non-condensable gases, carbon dioxide, and hydrocarbons
with two carbon atoms and hydrogen sulfide with helium (5.1.2) as the carrier gas and a TCD as a

1
© ©
HayeSep and Molsieve are examples of suitable products available commercially. This information is given for the
convenience of users of this document and does not constitute an endorsement by CEN of these products.
6

---------------------- Page: 8 ----------------------
SIST EN 15984:2022
EN 15984:2022 (E)
detector. After a pre-separation on a porous polymer column (column 3) propane and higher
hydrocarbons are back flushed and vented. See Figure A.5 for details.
When the inert gases (O /Ar, N , CH and CO) are on the molecular sieve 13X column, this column is
2 2 4
isolated. Carbon dioxide, the C -hydrocarbons and hydrogen sulfide are eluted from the porous
2
polymer column (column 4) and are detected. The C -hydrocarbons from this fraction are not used
2
for quantification. After this the molecular sieve 13X column (column 6) is eluted and the
components are determined on the TCD. Methane is quantified on Analysis System 3.
3) Analysis system 3
The third analysis system separates and quantifies all hydrocarbons by an FID and hydrogen (5.1.1)
or helium (5.1.2) as the carrier gas. Two columns are used in series. From the methyl silicone column
(column 1), the components above a certain cut point e.g. n-pentane are back flushed and determined
as a summed peak. The hydrocarbons from the alumina oxide column, column 2, are then separated
and quantified. See Figure A.6 for details.
7.2 System configuration
The gas chromatographic system may consist of one or more gas chromatographs, with the possibility
for isothermal or temperature programmed runs or both depending on the selected system configuration.
A TCD and an FID shall be available.
A gas flow control system and gas sampling valves and switching valves are used.
Means for quantification shall be provided.
Optionally a vaporizer may be used.
7.3 Columns
A combination of packed and capillary columns is possible.
It shall be ascertained that a quantitative separation of all the components that need to be determined
(see Table 1) is possible and that the summed total of C is quantitative. Adequate separation is required
5+
between the components on all three separation systems.
If cyclopropane can be determined, it shall be summed to propene.
An example for a typical configuration is given in Annex A.
8 Calibration
8.1 General
Depending on the production procedure of the reference gas mixture, it can be necessary to convert the
concentration units of the components in the calibration gas to (mol/mol) %.
Linearity of the detectors shall be checked according to Annex B.
If calibration is necessary, e.g. daily or for an analysis series, a reference gas mixture shall be analysed.
For each analysis system (see 7.1) at least one component, the reference component, needs to be
calibrated. For example, for analysis system 1 hydrogen, for analysis system 2 nitrogen and for analysis
system 3 propane. With these three components, an external calibration is done. The absolute response
factor is calculated.
7

---------------------- Page: 9 ----------------------
SIST EN 15984:2022
EN 15984:2022 (E)
For all the other components, relative response factors shall be used (see 8.3).
The relative response factor of the reference component is set at 1,0.
As alternative all absolute response factors can be determined for all the components that need to be
analysed in a reference gas mixture. A check of this calibration can take place with a gas mixture with
fewer components.
8.2 Absolute response factors
The determination of absolute response
...

SLOVENSKI STANDARD
oSIST prEN 15984:2021
01-maj-2021
Naftna industrija in proizvodi - Določevanje sestave rafinerijskega plina za
ogrevanje in izračunavanje vsebnosti ogljika in kalorične vrednosti - Plinska
kromatografska metoda
Petroleum industry and products - Determination of composition of refinery heating gas
and calculation of carbon content and calorific value - Gas chromatography method
Mineralölindustrie und -produkte - Bestimmung der Zusammensetzung von Heizgas für
Raffinerien und Berechnung des Kohlenstoffgehaltes und des Heizwertes -
Gaschromatographisches Verfahren
Industries et produits pétroliers - Détermination de la composition des gaz combustibles
de raffinerie, de leur pouvoir calorifique et de leur teneur en carbone - Méthode par
chromatographie en phase gazeuse
Ta slovenski standard je istoveten z: prEN 15984
ICS:
71.040.50 Fizikalnokemijske analitske Physicochemical methods of
metode analysis
75.160.30 Plinska goriva Gaseous fuels
oSIST prEN 15984:2021 en
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
oSIST prEN 15984:2021

---------------------- Page: 2 ----------------------
oSIST prEN 15984:2021


DRAFT
EUROPEAN STANDARD
prEN 15984
NORME EUROPÉENNE

EUROPÄISCHE NORM

May 2021
ICS 75.160.30 Will supersede EN 15984:2017
English Version

Petroleum industry and products - Determination of
composition of refinery heating gas and calculation of
carbon content and calorific value - Gas chromatography
method
Industries et produits pétroliers - Détermination de la Mineralölindustrie und -produkte - Bestimmung der
composition des gaz combustibles de raffinerie, de leur Zusammensetzung von Heizgas für Raffinerien und
pouvoir calorifique et de leur teneur en carbone - Berechnung des Kohlenstoffgehaltes und des
Méthode par chromatographie en phase gazeuse Heizwertes - Gaschromatographisches Verfahren
This draft European Standard is submitted to CEN members for enquiry. It has been drawn up by the Technical Committee
CEN/TC 19.

If this draft becomes a European Standard, CEN members are bound to comply with the CEN/CENELEC Internal Regulations
which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

This draft European Standard was established by CEN in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC
Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are
aware and to provide supporting documentation.

Warning : This document is not a European Standard. It is distributed for review and comments. It is subject to change without
notice and shall not be referred to as a European Standard.


EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2021 CEN All rights of exploitation in any form and by any means reserved Ref. No. prEN 15984:2021 E
worldwide for CEN national Members.

---------------------- Page: 3 ----------------------
oSIST prEN 15984:2021
prEN 15984:2021 (E)
Contents Page
European foreword . 3
1 Scope . 4
2 Normative references . 4
3 Terms and definitions . 4
4 Principle . 4
5 Reagents and materials . 5
5.1 Gases. . 5
5.2 Calibration sample. . 6
6 Apparatus . 6
7 Gas chromatographic analysis . 6
7.1 Analysis systems . 6
7.2 System configuration . 7
7.3 Columns . 7
8 Calibration . 7
8.1 General . 7
8.2 Absolute response factors . 8
8.3 Relative response factors . 8
9 Calculation . 8
9.1 General . 8
9.2 Calculation of the non-normalized mole fractions. 8
9.3 Validation of normalized composition (reference components) . 9
9.4 Calculation of carbon content . 9
9.5 Calculation of lower calorific value, on mass basis . 10
10 Expression of results . 11
11 Precision . 11
11.1 General . 11
11.2 Repeatability . 11
11.3 Reproducibility . 12
12 Test report . 12
Annex A (normative) Column combination . 13
Annex B (normative) Detector linearity check . 18
Annex C (informative) Calculation test data . 20
Annex D (normative) Data for calculation . 21
Annex E (informative) Precision estimates for the refinery gas composition . 22
Bibliography . 23
2

---------------------- Page: 4 ----------------------
oSIST prEN 15984:2021
prEN 15984:2021 (E)
European foreword
This document (prEN 15984:2021) has been prepared by Technical Committee CEN/TC 19 “Gaseous and
liquid fuels, lubricants and related products of petroleum, synthetic and biological origin”, the secretariat
of which is held by NEN.
This document is currently submitted to the CEN Enquiry.
This document will supersede EN 15984:2017.
This revision contains a new informative Annex with estimated precision data for selected components
in refinery gas.
This document has been is based on a DIN Standard [5] with the same scope.
3

---------------------- Page: 5 ----------------------
oSIST prEN 15984:2021
prEN 15984:2021 (E)
1 Scope
This document defines a gas chromatographic analysis for the determination of the composition of fuel
gases, as used in refinery heating gas. These results are used to calculate the carbon content and the lower
calorific value.
With this gas chromatographic analysis, an overall of 23 refinery heating gas components are determined
in concentrations as typically found in refineries (see Table 1 for further details).
Water is not analysed. The results represent dry gases.
NOTE 1 Depending on the equipment used, there is a possibility to determine higher hydrocarbons as well.
NOTE 2 For the purposes of this document, the terms “% (V/V)” is used to represent the volume fraction (φ).
IMPORTANT — This document does not purport to address all of the safety problems associated with its
use. It is the responsibility of the user of this document to establish appropriate safety and health
practices and determine the applicability of regulatory limitations.
2 Normative references
There are no normative references in this document.
3 Terms and definitions
No terms and definitions are listed in this document.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
• IEC Electropedia: available at http://www.electropedia.org/
• ISO Online browsing platform: available at https://www.iso.org/obp
4 Principle
This document defines a procedure that is used to determine all components that are present in a typical
refinery heating gas, as indicated in Table 1.
NOTE The composition range in which each component can be analyzed does depend on the actual sample
composition as higher amounts of a certain component may affect the detection range of other components eluting
close by. The general ranges which apply to all the individual components are:
— hydrocarbons from 0,01 (mol/100 mol) up to 100 (mol/100 mol);
— non-condensable gases from 0,02 (mol/100 mol) up to 100 (mol/100 mol);
— for hydrogen sulfide a range between 0,1 (mol/100 mol) up to 10 (mol/100 mol) has been found
applicable.
Three different analysis systems are necessary; they may be built in three separate gas chromatographs,
or be integrated into one.
Depending on the configuration, hydrocarbons with more than five carbon atoms are reported as a sum
parameter. The composition of the refinery heating gas is used to calculate the carbon content and the
calorific value. A typical procedure is described hereafter. A configuration is acceptable when the
determination results in the precision as described in Clause 11.
4

---------------------- Page: 6 ----------------------
oSIST prEN 15984:2021
prEN 15984:2021 (E)
Table 1 — Refinery heating gas components
Number Description Chemical formula
1 Hydrogen H
2
2 Oxygen/Argon O2/Ar
3 Nitrogen N
2
4 Carbon monoxide CO
5 Carbon dioxide CO
2
6 Hydrogen sulfide H2S
7 Methane CH
4
8 Ethane C H
2 6
9 Ethene C2H4
10 Ethyne (Acetylene) C H
2 2
11 Propane C3H8
12 Propene C H
3 6
13 Propyne (Methylacetylene) C3H4
14 Propadiene C H
3 4
15 iso-Butane C H
4 10
16 n-Butane C4H10
17 trans-2-Butene C H
4 8
18 1-Butene C4H8
19 2-Methyl-Propene C H
4 8
20 cis-2-Butene C4H8
21 1,3-Butadiene C H
4 6
22 iso-Pentane C5H12
23 n-Pentane C5H12
24 Other components with 5 or more Carbon atoms, excluding iso- and
n-Pentane (C )
5+
5 Reagents and materials
5.1 Gases.
5.1.1 Hydrogen, with a minimum purity of 99,995 % (V/V).
5.1.2 Helium, with a minimum purity of 99,995 % (V/V).
5.1.3 Nitrogen, with a minimum purity of 99,995 % (V/V).
5

---------------------- Page: 7 ----------------------
oSIST prEN 15984:2021
prEN 15984:2021 (E)
5.1.4 Air, free of oil and water.
5.1.5 Argon, as alternative for analysis system 2, with a minimum purity of 99,995 % (V/V).
5.2 Calibration sample.
A certified reference gas mixture in concentrations that allow the determination of the necessary
response factors (see 8.1) and retention times is required.
6 Apparatus
6.1 Usual laboratory apparatus and glassware.
6.2 Gas chromatographic apparatus, consisting of at least three separation systems able to work
simultaneously in one gas chromatograph, with a Thermal Conductivity Detector (TCD) and Flame
Ionization Detector (FID) that should be available, and confirming to the requirements as given in
Clause 7.
7 Gas chromatographic analysis
7.1 Analysis systems
The gas chromatographic system, as recommended in Annex A, consist of the following three parts:
1) Analysis system 1
All components except hydrogen (see Table 1) are retained on a porous polymer and a molecular
sieve column and back flushed.
1
© ©
NOTE HayeSep and Molsieve are examples of such commercially available columns .
Hydrogen is determined on a TCD with nitrogen (5.1.3) as the carrier gas (see Figure A.4).
2) Analysis system 2
The second analysis system separates non-condensable gases, carbon dioxide, and hydrocarbons
with two carbon atoms and hydrogen sulfide with helium (5.1.2) as the carrier gas and a TCD as a
detector. After a pre-separation on a porous polymer column (column 3) propane and higher
hydrocarbons are back flushed and vented. See Figure A.5 for details.
When the inert gases (O /Ar, N , CH and CO) are on the molecular sieve 13X column, this column is
2 2 4
isolated. Carbon dioxide, the C -hydrocarbons and hydrogen sulfide are eluted from the porous
2
polymer column (column 4) and are detected. The C -hydrocarbons from this fraction are not used
2
for quantification. After this the molecular sieve 13X column (column 6) is eluted and the
components are determined on the TCD. Methane is quantified on Analysis System 3.

1
© ©
HayeSep and Molsieve are examples of suitable products available commercially. This information is given for the
convenience of users of this document and does not constitute an endorsement by CEN of these products.
6

---------------------- Page: 8 ----------------------
oSIST prEN 15984:2021
prEN 15984:2021 (E)
3) Analysis system 3
The third analysis system separates and quantifies all hydrocarbons by an FID and hydrogen (5.1.1)
or helium (5.1.2) as the carrier gas. Two columns are used in series. From the methyl silicone column
(column 1), the components above a certain cut point e.g. n-pentane are back flushed and determined
as a summed peak. The hydrocarbons from the alumina oxide column, column 2, are then separated
and quantified. See Figure A.6 for details.
7.2 System configuration
The gas chromatographic system may consist of one or more gas chromatographs, with the possibility
for isothermal or temperature programmed runs or both depending on the selected system configuration.
A TCD and an FID shall be available.
A gas flow control system and gas sampling valves and switching valves are used.
Means for quantification shall be provided.
Optionally a vaporizer may be used.
7.3 Columns
A combination of packed and capillary columns is possible.
It shall be ascertained that a quantitative separation of all the components that need to be determined
(see Table 1) is possible and that the summed total of C is quantitative. Adequate separation is required
5+
between the components on all three separation systems.
If cyclopropane can be determined, it shall be summed to propene.
An example for a typical configuration is given in Annex A.
8 Calibration
8.1 General
Depending on the production procedure of the reference gas mixture, it might be necessary to convert
the concentration units of the components in the calibration gas to (mol/mol) %.
Linearity of the detectors shall be checked according to Annex B.
If calibration is necessary, e.g. daily or for an analysis series, a reference gas mixture shall be analysed.
For each analysis system (see 7.1) at least one component, the reference component, needs to be
calibrated. For example, for analysis system 1 hydrogen, for analysis system 2 nitrogen and for analysis
system 3 propane. With these three components, an external calibration is done. The absolute response
factor is calculated.
For all the other components, relative response factors shall be used (see 8.3).
The relative response factor of the reference component is set at 1,0.
As alternative all absolute response factors can be determined for all the components that need to be
analysed in a reference gas mixture. A check of this calibration can take place with a gas mixture with
fewer components.
7

---------------------- Page: 9 ----------------------
oSIST prEN 15984:2021
prEN 15984:2021 (E)
8.2 Absolute response factors
The determination of absolute response factors is possible when a repeatable injection is possible under
constant analysis conditions. The ratio between concentration and peak area is determined and the
absolute response factor is calculated as follows:
x
i
(1)
RF =
i
A
i
where

RF
i
is the absolute response factor of component i ;

x
i i
is the concentration of component in (mol/100 mol) in the calibration
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.