Surveillance of the activity concentrations of airborne radioactive substances in the workplace of nuclear facilities (ISO 16639:2017)

ISO 16639:2017 provides best practices and performance-based criteria for the use of air sampling devices and systems, including retrospective samplers and continuous air monitors. Specifically, this document covers air sampling program objectives, design of air sampling and monitoring programs to meet program objectives, methods for air sampling and monitoring in the workplace, and quality assurance to ensure system performance toward protecting workers against unnecessary inhalation exposures.
The primary purpose of the surveillance of airborne activity concentrations in the workplace is to evaluate and mitigate inhalation hazards to workers in facilities where these can become airborne. A comprehensive surveillance program can be used to
- determine the effectiveness of administrative and engineering controls for confinement,
- measure activity concentrations of radioactive substances,
- alert workers to high activity concentrations in the air,
- aid in estimating worker intakes when bioassay methods are unavailable,
- determine signage or posting requirements for radiation protection, and
- determine appropriate protective equipment and measures.
Air sampling techniques consist of two general approaches. The first approach is retrospective sampling, in which the air is sampled, the collection medium is removed and taken to a radiation detector system and analysed for radioactive substance, and the concentration results made available at a later time. In this context, the measured air concentrations are evaluated retrospectively. The second approach is continuous real-time air monitoring so that workers can be warned that a significant release of airborne radioactivity may have just occurred. In implementing an effective air sampling program, it is important to achieve a balance between the two general approaches. The specific balance depends on hazard level of the work and the characteristics of each facility.
A special component of the second approach which can apply, if properly implemented, is the preparation of continuous air monitoring instrumentation and protocols. This enables radiation protection monitoring of personnel that have been trained and fitted with personal protective equipment (PPE) that permit pre-planned, defined, extended stay time in elevated concentrations of airborne radioactive substances. Such approaches can occur either as part of a planned re-entry of a contaminated area following an accidental loss of containment for accident assessment and recovery, or part of a project which involves systematic or routine access to radioactive substances (e.g. preparing process material containing easily aerosolized components), or handling objects such as poorly characterized waste materials that may contain radioactive contaminants that could be aerosolized when handled during repackaging. In this special case, the role of continuous air monitoring is to provide an alert to health physics personnel that the air concentrations of concern have exceeded a threshold such that the planned level of protection afforded by PPE has been or could be exceeded. This level would typically be many 10's or 100's of times higher than the derived air concentration (DAC) established for unprotected workers. The monitoring alarm or alert would therefore be designed not to be confused with the normal monitoring alarm, and the action taken in response would be similarly targeted at the specific site and personnel involved.
The air sampling strategy should be designed to minimize internal exposures and balanced with social, technical, economic, practical, and public policy considerations that are associated with the use of the radioactive substance.

Überwachung der Aktivitätskonzentrationen von luftgetragenen radioaktiven Substanzen an Arbeitsplätzen kerntechnischer Einrichtungen (ISO 16639:2017)

Dieses Dokument stellt Leitlinien und Leistungskriterien für die Probenentnahme luftgetragener radioaktiver Stoffe am Arbeitsplatz zur Verfügung. Der Schwerpunkt liegt dabei auf dem Gesundheitsschutz der Arbeits-kräfte in Innenräumen.
Dieses Dokument enthält bewährte Verfahren und leistungsbezogene Kriterien für den Einsatz von Geräten und Einrichtungen für die Luftprobenentnahme, einschließlich retrospektiver Sammler und kontinuierlicher Luftmonitore. Insbesondere deckt diese Norm die Ziele eines Luftprobenentnahmeprogramms, die Planung von Probenentnahme- und Messprogrammen zum Erreichen dieser Programmziele, die Verfahren zur Pro-benentnahme und Messung von Luft am Arbeitsplatz und die Qualitätssicherung zur Sicherstellung der Leis-tungsfähigkeit des Systems zum Schutz der Arbeitskräfte vor unnötiger Strahlenbelastung durch Inhalation ab.
Der primäre Zweck der Überwachung der Aktivitätskonzentrationen luftgetragener radioaktiver Stoffe am Ar-beitsplatz ist die Bewertung und Minimierung der Inhalationsgefahr für Arbeitskräfte in Einrichtungen, in denen diese Stoffe in die Luft gelangen können. Ein umfassendes Überwachungsprogramm kann verwendet werden, um:
–   die Wirksamkeit administrativer und technischer Kontrollen für den Einschluss festzulegen;
–   die Aktivitätskonzentrationen radioaktiver Stoffe zu messen;
–   die Arbeitskräfte vor hohen Aktivitätskonzentrationen in der Luft zu warnen;
–   die Abschätzung der Aktivitätszufuhr für die Arbeitskräfte zu unterstützen, falls biologische Testverfahren nicht zur Verfügung stehen;
–   Anforderungen an die Beschilderung und Kennzeichnung für den Strahlenschutz festzulegen;
–   geeignete Schutzausrüstung und Schutzmaßnahmen festzulegen.
Die Verfahren zur Luftprobenentnahme bestehen aus zwei allgemeinen Ansätzen. Der erste Ansatz ist die retrospektive Probenentnahme. Dabei werden Bestandteile der Luft zunächst gesammelt. Das Sammelme-dium wird anschließend entnommen, zu einem Strahlungsdetektor gebracht und auf radioaktive Stoffe hin analysiert. Die ermittelten Aktivitätskonzentrationen stehen erst zu einem späteren Zeitpunkt zur Verfügung, d. h. ihre Bewertung erfolgt retrospektiv. Der zweite Ansatz ist die kontinuierliche Echtzeit-Messung. Hierbei werden die Aktivitätskonzentrationen kontinuierlich gemessen, so dass die Arbeitskräfte bei einer möglicher-weise gerade aufgetretenen, signifikanten Freisetzung luftgetragener Aktivität gewarnt werden können. Bei der Implementierung eines effektiven Luftprobenentnahmeprogramms ist es wichtig, ein ausgewogenes Ver-hältnis zwischen beiden generellen Ansätzen zu erzielen. Dieses hängt insbesondere vom Gefährdungsgrad der Arbeit und den charakteristischen Eigenschaften jeder einzelnen Einrichtung ab.

Surveillance de l’activité volumique des substances radioactives dans l’air des lieux de travail des installations nucléaires (ISO 16639:2017)

ISO 16639:2017 fournit des lignes directrices et des critères de performance pour l'échantillonnage des substances radioactives dans l'air des lieux de travail. L'accent est mis sur la protection de la santé des travailleurs dans l'environnement intérieur.
ISO 16639:2017 fournit les meilleures pratiques et les critères basés sur les performances pour l'utilisation de dispositifs et de systèmes d'échantillonnage, y compris les dispositifs d'échantillonnage pour mesurage rétrospectif de la radioactivité et les dispositifs de surveillance en continu de l'air. Plus spécifiquement, le présent document couvre les objectifs et la conception des programmes d'échantillonnage et de surveillance de l'air visant à satisfaire les objectifs des programmes, les méthodes d'échantillonnage et de surveillance de l'air sur le lieu de travail, et l'assurance qualité visant à garantir les performances du système destiné à protéger les travailleurs contre les expositions inutiles par inhalation.
L'objectif premier de la surveillance des activités volumiques dans l'air sur les lieux de travail est d'évaluer et d'atténuer les risques par inhalation auxquels sont exposés les travailleurs dans les lieux où elles peuvent être présentes dans l'air. Un programme de surveillance complet peut être utilisé pour:
-      déterminer si les contrôles administratifs et techniques du confinement sont efficaces;
-      mesurer les activités volumiques des substances radioactives;
-      alerter les travailleurs d'activités volumiques élevées dans l'air;
-      aider à estimer les incorporations par les travailleurs en l'absence de méthodes d'analyse radiotoxicologique;
-      déterminer les exigences en matière de signalisation ou d'affichage pour la protection au rayonnement; et
-      déterminer l'équipement de protection et les mesures appropriés.
Les techniques d'échantillonnage de l'air consistent en deux approches générales. La première approche est l'échantillonnage rétrospectif qui consiste à prélever des échantillons de l'air, à retirer le milieu de prélèvement, à le soumettre à un système de détection des rayonnements et à analyser les substances radioactives, et enfin à mettre à disposition ultérieurement les résultats de concentrations. Dans ce contexte, les concentrations mesurées dans l'air sont évaluées rétrospectivement. La deuxième approche est une surveillance de l'air en continu et en temps réel pour que les travailleurs puissent être avertis lorsqu'un important rejet de radioactivité dans l'air vient juste de se produire. Pour l'implémentation d'un programme d'échantillonnage de l'air efficace, il est important d'atteindre un équilibre correct entre les deux approches générales. L'équilibre spécifique dépend du niveau de risque du travail et des caractéristiques de chaque installation.
Un composant spécial de la deuxième approche qui peut être appliqué s'il est implémenté correctement est la préparation des instruments de détection et des protocoles de surveillance continue de l'air. Cela permet le suivi de la protection contre les rayonnements du personnel qui a été formé et équipé d'un équipement de protection individuelle (EPI) qui les rend en mesure de séjourner pendant une durée étendue définie et préprogrammée dans les concentrations élevées de substances radioactives dans l'air. De telles approches peuvent avoir lieu soit dans le cadre d'une réentrée programmée dans une zone contaminée suite à une perte accidentelle de confinement afin d'évaluer l'

Nadzorovanje koncentracije aktivnosti radioaktivnih snovi v zraku na delovnem mestu v jedrskih postrojih (ISO 16639:2017)

Standard ISO 16639:2017 podaja najboljše prakse in merila, ki temeljijo na učinkovitosti, za uporabo naprav ter sistemov za vzorčenje zraka, vključno z retrospektivnimi vzorčevalniki in napravami za stalen nadzor zraka. Natančneje, ta dokument zajema cilje programa vzorčenja zraka, snovanje programov za vzorčenje in nadzor zraka, ki ustrezajo ciljem programa, metode za vzorčenje in nadzor zraka na delovnem mestu ter zagotavljanje kakovosti z namenom delovanja sistema v smeri zaščite delavcev pred nepotrebno izpostavljenostjo vdihavanju.
Prvotni namen nadzorovanja koncentracije aktivnosti v zraku na delovnem mestu je ocenjevanje in zmanjšanje nevarnosti vdihavanja za delavce v obratih, kjer lahko snovi lebdijo v zraku. Celovit program nadzorovanja se lahko uporabi za:
– določanje učinkovitosti administrativnega in inženirskega nadzora za osamitev,
– merjenje koncentracije aktivnosti radioaktivnih snovi,
– opozarjanje delavcev na visoko koncentracijo aktivnosti v zraku,
– pomoč in ocenjevanje količine vdihanih snovi, kadar biološke metode niso na voljo,
– določanje znakov ali objavljanje zahtev za zaščito pred sevanjem ter
– določanje primerne zaščitne opreme in zaščitnih ukrepov.
Tehnike vzorčenja zraka zajemajo dva splošna pristopa. Prvi pristop je retrospektivno vzorčenje, pri katerem se zrak vzorči, ko je medij za zbiranje odstranjen in se vzorec analizira za radioaktivne snovi v sistemu za odkrivanje sevanja, rezultati koncentracije pa so na voljo naknadno. V tem kontekstu so izmerjene koncentracije aktivnosti v zraku vrednotene retrospektivno. Drugi pristop je stalen sprotni nadzor, ki omogoča pravočasno obveščanje delavcev ob morebitnem pomembnem izpustu sevanja v zrak. Pri izvajanju učinkovitega programa vzorčenje zraka je pomembno, da se vzpostavi ravnovesje med obema pristopoma. To ravnovesje je odvisno od stopnje nevarnosti pri delu in značilnosti vsakega obrata.
Posebna komponenta drugega pristopa, ki lahko velja, če je pravilno izvedena, je pripravljenost instrumentov in protokolov za stalni nadzor zraka. To omogoča nadzor zaščite pred sevanjem za osebje, ki je bilo usposobljeno in uporablja osebno zaščitno opremo (PPE), ki dovoljuje predhodno načrtovan, določen ter podaljšan čas čakanja v zvišanih koncentracijah radioaktivnih snovi v zraku. Takšni pristopi se lahko zgodijo kot del načrtovanega ponovnega vstopa v onesnaženo območje po naključnem izpustu za namene ocenjevanja in odpravljanja posledic nesreče ali kot del projekta, ki vključuje sistematičen ali rutinski dostop do radioaktivnih snovi (npr. pripravljanje proizvodnega materiala, ki vsebuje komponente, ki lahko prehajajo v zrak), ali za rokovanje s predmeti, kot je slabo označen odpadni material z morebitnimi radioaktivnimi onesnaževali, ki pri vnovičnem pakiranju zlahka prehajajo v zrak. V tem posebnem primeru je vloga stalnega nadzora zraka to, da medicinski fiziki prejmejo alarm zaradi preseženega praga ustrezne koncentracije v zraku, ki lahko pomeni, da je načrtovana raven zaščite z osebno zaščitno opremo presežena ali pa bi lahko bila presežena. Ta raven bi običajno bila 10- ali 100-krat višja, kot je izpeljana koncentracija v zraku (DAC), ki velja za nezaščitene delavce. Nadzorni alarm ali opozorilo bi bila torej načrtovana tako, da se ju ne zamenja z običajnim nadzornim alarmom, in ukrepi kot odziv nanj bi bili podobno usmerjeni na določeno mesto in vpleteno osebje.
Strategija vzorčenja zraka bi morala biti načrtovana tako, da zmanjša notranjo izpostavljenost in da je v ravnovesju s socialnimi, tehničnimi, ekonomskimi, praktičnimi ter javnimi dejavniki, ki so povezani z rabo radioaktivnih snovi.

General Information

Status
Published
Public Enquiry End Date
31-Jan-2019
Publication Date
02-Jul-2019
Technical Committee
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
20-Jun-2019
Due Date
25-Aug-2019
Completion Date
03-Jul-2019

Buy Standard

Standard
EN ISO 16639:2019
English language
41 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Draft
prEN ISO 16639:2019
English language
38 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)

SLOVENSKI STANDARD
SIST EN ISO 16639:2019
01-september-2019
Nadzorovanje koncentracije aktivnosti radioaktivnih snovi v zraku na delovnem
mestu v jedrskih postrojih (ISO 16639:2017)
Surveillance of the activity concentrations of airborne radioactive substances in the
workplace of nuclear facilities (ISO 16639:2017)
Überwachung der Aktivitätskonzentrationen von luftgetragenen radioaktiven Substanzen
an Arbeitsplätzen kerntechnischer Einrichtungen (ISO 16639:2017)
Surveillance de l’activité volumique des substances radioactives dans l’air des lieux de
travail des installations nucléaires (ISO 16639:2017)
Ta slovenski standard je istoveten z: EN ISO 16639:2019
ICS:
13.040.30 Kakovost zraka na delovnem Workplace atmospheres
mestu
13.280 Varstvo pred sevanjem Radiation protection
27.120.20 Jedrske elektrarne. Varnost Nuclear power plants. Safety
SIST EN ISO 16639:2019 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------

SIST EN ISO 16639:2019

---------------------- Page: 2 ----------------------

SIST EN ISO 16639:2019


EN ISO 16639
EUROPEAN STANDARD

NORME EUROPÉENNE

June 2019
EUROPÄISCHE NORM
ICS 13.280
English Version

Surveillance of the activity concentrations of airborne
radioactive substances in the workplace of nuclear
facilities (ISO 16639:2017)
Surveillance de l'activité volumique des substances Überwachung der Aktivitätskonzentrationen von
radioactives dans l'air des lieux de travail des luftgetragenen radioaktiven Substanzen an
installations nucléaires (ISO 16639:2017) Arbeitsplätzen kerntechnischer Einrichtungen (ISO
16639:2017)
This European Standard was approved by CEN on 8 March 2019.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and United Kingdom.





EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2019 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN ISO 16639:2019 E
worldwide for CEN national Members.

---------------------- Page: 3 ----------------------

SIST EN ISO 16639:2019
EN ISO 16639:2019 (E)
Contents Page
European foreword . 3

2

---------------------- Page: 4 ----------------------

SIST EN ISO 16639:2019
EN ISO 16639:2019 (E)
European foreword
The text of ISO 16639:2017 has been prepared by Technical Committee ISO/TC 85 "Nuclear energy,
nuclear technologies, and radiological protection” of the International Organization for Standardization
(ISO) and has been taken over as EN ISO 16639:2019 by Technical Committee CEN/TC 430 “Nuclear
energy, nuclear technologies, and radiological protection” the secretariat of which is held by AFNOR.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by December 2019, and conflicting national standards
shall be withdrawn at the latest by December 2019.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
According to the CEN-CENELEC Internal Regulations, the national standards organizations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia,
France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta,
Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and the United Kingdom.
Endorsement notice
The text of ISO 16639:2017 has been approved by CEN as EN ISO 16639:2019 without any modification.


3

---------------------- Page: 5 ----------------------

SIST EN ISO 16639:2019

---------------------- Page: 6 ----------------------

SIST EN ISO 16639:2019
INTERNATIONAL ISO
STANDARD 16639
First edition
2017-01
Surveillance of the activity
concentrations of airborne radioactive
substances in the workplace of
nuclear facilities
Surveillance de l’activité volumique des substances radioactives dans
l’air des lieux de travail des installations nucléaires
Reference number
ISO 16639:2017(E)
©
ISO 2017

---------------------- Page: 7 ----------------------

SIST EN ISO 16639:2019
ISO 16639:2017(E)

COPYRIGHT PROTECTED DOCUMENT
© ISO 2017, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2017 – All rights reserved

---------------------- Page: 8 ----------------------

SIST EN ISO 16639:2019
ISO 16639:2017(E)

Contents Page
Foreword .v
Introduction .vi
1 Scope . 1
2 Normative references . 2
3 Terms and definitions . 2
4 Symbols . 5
5 Developing the surveillance program . 5
5.1 Reasons for conducting a surveillance programme . 5
5.1.1 General. 5
5.1.2 Sampling when respiratory protective equipment is used . 6
5.1.3 Sampling to establish air contamination areas . 6
5.1.4 Air sampling as a basis for determining worker intakes. 6
5.1.5 Air monitoring for early warning of elevated air concentrations . 6
5.2 Graded approach to sampling . 7
5.3 Frequency of sampling . 8
5.3.1 General. 8
5.3.2 Grab vs. continuous sampling . 8
5.3.3 Continuous monitoring of activity concentrations . 8
5.3.4 Prompt analysis of certain samples . 9
5.4 Substitutes for air sampling . 9
6 Location of samplers and monitors . 9
6.1 General . 9
6.2 Types of air flow studies . 9
6.2.1 General. 9
6.2.2 Qualitative airflow studies . 9
6.2.3 Quantitative airflow studies .10
6.3 Location of samplers for estimating committed effective dose .10
6.4 Location of samplers for evaluating effectiveness of containment.11
6.5 Location of samplers for posting of air contamination areas .11
6.6 Location of portable samplers .12
6.7 Location of CAM for continuous monitoring of the activity concentration .12
7 Collection of samples .12
7.1 General .12
7.2 Sampling of aerosol particles .12
7.3 Gas Sampling .13
8 Evaluation of sampling results .14
8.1 Determining the average activity concentration .14
8.2 Uncertainty .14
8.3 Techniques for correcting for radon progeny interference .15
8.4 Evaluating changes in activity concentration over time .15
8.5 Review of sampling results.15
9 Evaluating the effectiveness of the sampling program .16
9.1 General .16
9.2 Dose-based assessment of the adequacy of the sampling program.16
10 Quality assurance and quality control .17
10.1 General .17
10.2 Sample identification, handling, and storage .17
10.3 Sampling and monitoring equipment .17
10.3.1 General.17
10.3.2 Performance of measuring instruments .18
© ISO 2017 – All rights reserved iii

---------------------- Page: 9 ----------------------

SIST EN ISO 16639:2019
ISO 16639:2017(E)

10.3.3 Air in-leakage testing .18
10.4 Documentation and record keeping .18
Annex A (informative) Examples for the determination of uncertainty, decision threshold
and detection limit according to ISO 11929 .20
Annex B (informative) Correcting for the interference of radon progeny.27
Annex C (informative) Normalized concentration and exposure .29
Annex D (informative) Example applications of evaluating sampling program sensitivity
from the viewpoint of potential missed exposure .30
Bibliography .32
iv © ISO 2017 – All rights reserved

---------------------- Page: 10 ----------------------

SIST EN ISO 16639:2019
ISO 16639:2017(E)

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment,
as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the
Technical Barriers to Trade (TBT) see the following URL: www . i so .org/ iso/ foreword .html.
The committee responsible for this document is ISO/TC 85, Nuclear energy, nuclear technologies, and
radiological protection, Subcommittee SC 2, Radiological protection.
© ISO 2017 – All rights reserved v

---------------------- Page: 11 ----------------------

SIST EN ISO 16639:2019
ISO 16639:2017(E)

Introduction
Sampling of airborne radionuclides and monitoring of activity concentration in workplaces are critically
important for maintaining worker safety at facilities where dispersible radioactive substances are used.
Specifically, air sampling and monitoring are critical for evaluation of containment integrity, evaluation
of effectiveness of contamination control programs and work practices, providing measurements for
qualitative dose assessment, providing a general assessment of the level of the airborne hazard in a room,
and for providing workers an immediate warning when the activity concentration exceeds safe levels.
This document sets forth guidelines and performance criteria for sampling airborne radioactive
substances and monitoring activity concentration in the workplace of nuclear facilities. Emphasis is
on health protection for workers in indoor environments. This document provides best practices and
performance-based criteria for the use of sampling devices and systems, including delayed radioactivity
measurement samplers and continuous air monitors. Specifically, this document covers air sampling
program objectives, design of sampling and monitoring programs to meet program objectives, methods
for air sampling and monitoring in the workplace, and quality assurance to ensure system performance
toward protecting workers against unnecessary inhalation exposures. Taken together, these activities
constitute the sampling or surveillance program.
The primary purpose of the surveillance of airborne activity concentrations in the workplace is to
evaluate and mitigate inhalation hazards to workers in facilities where these may become airborne.
Results often provide the basis for development and evaluation of control procedures and may indicate
if engineering controls or operational changes are necessary.
The surveillance can consist of two general techniques. The first is retrospective sampling, in which
constituents of the air are sampled, the collection medium is removed and taken to a radiation detector
system and analysed for radioactive substances, and the activity concentration results made available
at a later time. In this context, the measured activity concentrations are evaluated retrospectively. The
second approach is real-time monitoring, in which activity concentrations are continuously monitored
so that workers can be warned that a significant release of airborne activity may have occurred. In
implementing an effective sampling program, it is important to achieve a proper balance between the
two general approaches of the program. The specific balance depends on the hazard level of the work
and the characteristics of each facility.
When designing a surveillance program, the optimization of worker protection minimizes internal
and external exposures while balancing social, technical, economic, practical, and public policy
considerations that are associated with the use of the radioactive substance.
A comprehensive surveillance program should also consider that the monitoring program is only one
element of a comprehensive radiation protection program. Therefore, individuals involved with the
monitoring program should interact with personnel working in the other elements of the radiation
protection program, such as contamination control and internal dosimetry.
vi © ISO 2017 – All rights reserved

---------------------- Page: 12 ----------------------

SIST EN ISO 16639:2019
INTERNATIONAL STANDARD ISO 16639:2017(E)
Surveillance of the activity concentrations of airborne
radioactive substances in the workplace of nuclear
facilities
1 Scope
This document provides guidelines and performance criteria for sampling airborne radioactive
substances in the workplace. Emphasis is on health protection of workers in the indoor environment.
This document provides best practices and performance-based criteria for the use of air sampling
devices and systems, including retrospective samplers and continuous air monitors. Specifically, this
document covers air sampling program objectives, design of air sampling and monitoring programs
to meet program objectives, methods for air sampling and monitoring in the workplace, and quality
assurance to ensure system performance toward protecting workers against unnecessary inhalation
exposures.
The primary purpose of the surveillance of airborne activity concentrations in the workplace is to
evaluate and mitigate inhalation hazards to workers in facilities where these can become airborne. A
comprehensive surveillance program can be used to
— determine the effectiveness of administrative and engineering controls for confinement,
— measure activity concentrations of radioactive substances,
— alert workers to high activity concentrations in the air,
— aid in estimating worker intakes when bioassay methods are unavailable,
— determine signage or posting requirements for radiation protection, and
— determine appropriate protective equipment and measures.
Air sampling techniques consist of two general approaches. The first approach is retrospective sampling,
in which the air is sampled, the collection medium is removed and taken to a radiation detector system
and analysed for radioactive substance, and the concentration results made available at a later time.
In this context, the measured air concentrations are evaluated retrospectively. The second approach
is continuous real-time air monitoring so that workers can be warned that a significant release of
airborne radioactivity may have just occurred. In implementing an effective air sampling program, it is
important to achieve a balance between the two general approaches. The specific balance depends on
hazard level of the work and the characteristics of each facility.
A special component of the second approach which can apply, if properly implemented, is the preparation
of continuous air monitoring instrumentation and protocols. This enables radiation protection
monitoring of personnel that have been trained and fitted with personal protective equipment (PPE)
that permit pre-planned, defined, extended stay time in elevated concentrations of airborne radioactive
substances. Such approaches can occur either as part of a planned re-entry of a contaminated area
following an accidental loss of containment for accident assessment and recovery, or part of a project
which involves systematic or routine access to radioactive substances (e.g. preparing process material
containing easily aerosolized components), or handling objects such as poorly characterized waste
materials that may contain radioactive contaminants that could be aerosolized when handled during
repackaging. In this special case, the role of continuous air monitoring is to provide an alert to health
physics personnel that the air concentrations of concern have exceeded a threshold such that the
planned level of protection afforded by PPE has been or could be exceeded. This level would typically be
many 10’s or 100’s of times higher than the derived air concentration (DAC) established for unprotected
workers. The monitoring alarm or alert would therefore be designed not to be confused with the normal
© ISO 2017 – All rights reserved 1

---------------------- Page: 13 ----------------------

SIST EN ISO 16639:2019
ISO 16639:2017(E)

monitoring alarm, and the action taken in response would be similarly targeted at the specific site and
personnel involved.
The air sampling strategy should be designed to minimize internal exposures and balanced with social,
technical, economic, practical, and public policy considerations that are associated with the use of the
radioactive substance.
A comprehensive air sampling strategy should also consider that the air sampling program is only
one element of a broader radiation protection program. Therefore, individuals involved with the air
sampling program should interact with personnel working in other elements of the radiation protection
program, such as contamination control and internal dosimetry.
This document does not address outdoor air sampling, effluent monitoring, or radon measurements.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 11929, Determination of the characteristic limits (decision threshold, detection limit and limits of the
confidence interval) for measurements of ionizing radiation — Fundamentals and application
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at http:// www .electropedia .org/
— ISO Online browsing platform: available at http:// www .iso .org/ obp
3.1
accuracy
closeness of agreement between a measured value and a true value
3.2
aerodynamic diameter
D
a
-3
diameter of a sphere with density 1 000 kg·m that has the same sedimentation velocity in quiescent
air as the actual particle of arbitrary shape and density
3.3
aerosol
dispersion of solid or liquid particles in air or other gas
Note 1 to entry: An aerosol is not only the aerosol particles.
3.4
airborne radioactive substance
radioactive substance dispersed in the air in the form of dusts, fumes, particulates, mists, vapours,
or gases
3.5
air contamination area
area accessible to individuals where the measured activity concentrations of an airborne radioactive
substance exceeds or is likely to exceed the applicable national criteria
2 © ISO 2017 – All rights reserved

---------------------- Page: 14 ----------------------

SIST EN ISO 16639:2019
ISO 16639:2017(E)

3.6
air sampler
device designed to pass a known volume of air containing a radioactive substance through a filter or
other media and thereby trapping the airborne radioactive substance on the sampling media
3.7
annual limit on intake
ALI
derived limit for the amount of radioactive substance (in Bq) taken into the body of an adult worker by
inhalation or ingestion in a year
3.8
breathing zone
BZ
uniform description of the volume of air directly around the worker‘s upper body and head, which may
be drawn into the lungs during the course of breathing
Note 1 to entry: An air sample representative of the breathing zone is usually considered to be representative if
drawn from within about 30 cm of the worker’s head.
3.9
breathing zone sampler
BZA
air sampler located in the breathing zone
Note 1 to entry: Other common terms in
...

SLOVENSKI STANDARD
oSIST prEN ISO 16639:2019
01-januar-2019
Nadzorovanje koncentracije aktivnosti radioaktivnih snovi v zraku na delovnem
mestu v jedrskih postrojih (ISO 16639:2017)
Surveillance of the activity concentrations of airborne radioactive substances in the
workplace of nuclear facilities (ISO 16639:2017)
Überwachung der Aktivitätskonzentrationen von luftgetragenen radioaktiven Substanzen
an Arbeitsplätzen kerntechnischer Einrichtungen (ISO 16639:2017)
Surveillance de l’activité volumique des substances radioactives dans l’air des lieux de
travail des installations nucléaires (ISO 16639:2017)
Ta slovenski standard je istoveten z: prEN ISO 16639
ICS:
13.040.30 Kakovost zraka na delovnem Workplace atmospheres
mestu
13.280 Varstvo pred sevanjem Radiation protection
27.120.20 Jedrske elektrarne. Varnost Nuclear power plants. Safety
oSIST prEN ISO 16639:2019 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
oSIST prEN ISO 16639:2019

---------------------- Page: 2 ----------------------
oSIST prEN ISO 16639:2019
INTERNATIONAL ISO
STANDARD 16639
First edition
2017-01
Surveillance of the activity
concentrations of airborne radioactive
substances in the workplace of
nuclear facilities
Surveillance de l’activité volumique des substances radioactives dans
l’air des lieux de travail des installations nucléaires
Reference number
ISO 16639:2017(E)
©
ISO 2017

---------------------- Page: 3 ----------------------
oSIST prEN ISO 16639:2019
ISO 16639:2017(E)

COPYRIGHT PROTECTED DOCUMENT
© ISO 2017, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2017 – All rights reserved

---------------------- Page: 4 ----------------------
oSIST prEN ISO 16639:2019
ISO 16639:2017(E)

Contents Page
Foreword .v
Introduction .vi
1 Scope . 1
2 Normative references . 2
3 Terms and definitions . 2
4 Symbols . 5
5 Developing the surveillance program . 5
5.1 Reasons for conducting a surveillance programme . 5
5.1.1 General. 5
5.1.2 Sampling when respiratory protective equipment is used . 6
5.1.3 Sampling to establish air contamination areas . 6
5.1.4 Air sampling as a basis for determining worker intakes. 6
5.1.5 Air monitoring for early warning of elevated air concentrations . 6
5.2 Graded approach to sampling . 7
5.3 Frequency of sampling . 8
5.3.1 General. 8
5.3.2 Grab vs. continuous sampling . 8
5.3.3 Continuous monitoring of activity concentrations . 8
5.3.4 Prompt analysis of certain samples . 9
5.4 Substitutes for air sampling . 9
6 Location of samplers and monitors . 9
6.1 General . 9
6.2 Types of air flow studies . 9
6.2.1 General. 9
6.2.2 Qualitative airflow studies . 9
6.2.3 Quantitative airflow studies .10
6.3 Location of samplers for estimating committed effective dose .10
6.4 Location of samplers for evaluating effectiveness of containment.11
6.5 Location of samplers for posting of air contamination areas .11
6.6 Location of portable samplers .12
6.7 Location of CAM for continuous monitoring of the activity concentration .12
7 Collection of samples .12
7.1 General .12
7.2 Sampling of aerosol particles .12
7.3 Gas Sampling .13
8 Evaluation of sampling results .14
8.1 Determining the average activity concentration .14
8.2 Uncertainty .14
8.3 Techniques for correcting for radon progeny interference .15
8.4 Evaluating changes in activity concentration over time .15
8.5 Review of sampling results.15
9 Evaluating the effectiveness of the sampling program .16
9.1 General .16
9.2 Dose-based assessment of the adequacy of the sampling program.16
10 Quality assurance and quality control .17
10.1 General .17
10.2 Sample identification, handling, and storage .17
10.3 Sampling and monitoring equipment .17
10.3.1 General.17
10.3.2 Performance of measuring instruments .18
© ISO 2017 – All rights reserved iii

---------------------- Page: 5 ----------------------
oSIST prEN ISO 16639:2019
ISO 16639:2017(E)

10.3.3 Air in-leakage testing .18
10.4 Documentation and record keeping .18
Annex A (informative) Examples for the determination of uncertainty, decision threshold
and detection limit according to ISO 11929 .20
Annex B (informative) Correcting for the interference of radon progeny.27
Annex C (informative) Normalized concentration and exposure .29
Annex D (informative) Example applications of evaluating sampling program sensitivity
from the viewpoint of potential missed exposure .30
Bibliography .32
iv © ISO 2017 – All rights reserved

---------------------- Page: 6 ----------------------
oSIST prEN ISO 16639:2019
ISO 16639:2017(E)

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment,
as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the
Technical Barriers to Trade (TBT) see the following URL: www . i so .org/ iso/ foreword .html.
The committee responsible for this document is ISO/TC 85, Nuclear energy, nuclear technologies, and
radiological protection, Subcommittee SC 2, Radiological protection.
© ISO 2017 – All rights reserved v

---------------------- Page: 7 ----------------------
oSIST prEN ISO 16639:2019
ISO 16639:2017(E)

Introduction
Sampling of airborne radionuclides and monitoring of activity concentration in workplaces are critically
important for maintaining worker safety at facilities where dispersible radioactive substances are used.
Specifically, air sampling and monitoring are critical for evaluation of containment integrity, evaluation
of effectiveness of contamination control programs and work practices, providing measurements for
qualitative dose assessment, providing a general assessment of the level of the airborne hazard in a room,
and for providing workers an immediate warning when the activity concentration exceeds safe levels.
This document sets forth guidelines and performance criteria for sampling airborne radioactive
substances and monitoring activity concentration in the workplace of nuclear facilities. Emphasis is
on health protection for workers in indoor environments. This document provides best practices and
performance-based criteria for the use of sampling devices and systems, including delayed radioactivity
measurement samplers and continuous air monitors. Specifically, this document covers air sampling
program objectives, design of sampling and monitoring programs to meet program objectives, methods
for air sampling and monitoring in the workplace, and quality assurance to ensure system performance
toward protecting workers against unnecessary inhalation exposures. Taken together, these activities
constitute the sampling or surveillance program.
The primary purpose of the surveillance of airborne activity concentrations in the workplace is to
evaluate and mitigate inhalation hazards to workers in facilities where these may become airborne.
Results often provide the basis for development and evaluation of control procedures and may indicate
if engineering controls or operational changes are necessary.
The surveillance can consist of two general techniques. The first is retrospective sampling, in which
constituents of the air are sampled, the collection medium is removed and taken to a radiation detector
system and analysed for radioactive substances, and the activity concentration results made available
at a later time. In this context, the measured activity concentrations are evaluated retrospectively. The
second approach is real-time monitoring, in which activity concentrations are continuously monitored
so that workers can be warned that a significant release of airborne activity may have occurred. In
implementing an effective sampling program, it is important to achieve a proper balance between the
two general approaches of the program. The specific balance depends on the hazard level of the work
and the characteristics of each facility.
When designing a surveillance program, the optimization of worker protection minimizes internal
and external exposures while balancing social, technical, economic, practical, and public policy
considerations that are associated with the use of the radioactive substance.
A comprehensive surveillance program should also consider that the monitoring program is only one
element of a comprehensive radiation protection program. Therefore, individuals involved with the
monitoring program should interact with personnel working in the other elements of the radiation
protection program, such as contamination control and internal dosimetry.
vi © ISO 2017 – All rights reserved

---------------------- Page: 8 ----------------------
oSIST prEN ISO 16639:2019
INTERNATIONAL STANDARD ISO 16639:2017(E)
Surveillance of the activity concentrations of airborne
radioactive substances in the workplace of nuclear
facilities
1 Scope
This document provides guidelines and performance criteria for sampling airborne radioactive
substances in the workplace. Emphasis is on health protection of workers in the indoor environment.
This document provides best practices and performance-based criteria for the use of air sampling
devices and systems, including retrospective samplers and continuous air monitors. Specifically, this
document covers air sampling program objectives, design of air sampling and monitoring programs
to meet program objectives, methods for air sampling and monitoring in the workplace, and quality
assurance to ensure system performance toward protecting workers against unnecessary inhalation
exposures.
The primary purpose of the surveillance of airborne activity concentrations in the workplace is to
evaluate and mitigate inhalation hazards to workers in facilities where these can become airborne. A
comprehensive surveillance program can be used to
— determine the effectiveness of administrative and engineering controls for confinement,
— measure activity concentrations of radioactive substances,
— alert workers to high activity concentrations in the air,
— aid in estimating worker intakes when bioassay methods are unavailable,
— determine signage or posting requirements for radiation protection, and
— determine appropriate protective equipment and measures.
Air sampling techniques consist of two general approaches. The first approach is retrospective sampling,
in which the air is sampled, the collection medium is removed and taken to a radiation detector system
and analysed for radioactive substance, and the concentration results made available at a later time.
In this context, the measured air concentrations are evaluated retrospectively. The second approach
is continuous real-time air monitoring so that workers can be warned that a significant release of
airborne radioactivity may have just occurred. In implementing an effective air sampling program, it is
important to achieve a balance between the two general approaches. The specific balance depends on
hazard level of the work and the characteristics of each facility.
A special component of the second approach which can apply, if properly implemented, is the preparation
of continuous air monitoring instrumentation and protocols. This enables radiation protection
monitoring of personnel that have been trained and fitted with personal protective equipment (PPE)
that permit pre-planned, defined, extended stay time in elevated concentrations of airborne radioactive
substances. Such approaches can occur either as part of a planned re-entry of a contaminated area
following an accidental loss of containment for accident assessment and recovery, or part of a project
which involves systematic or routine access to radioactive substances (e.g. preparing process material
containing easily aerosolized components), or handling objects such as poorly characterized waste
materials that may contain radioactive contaminants that could be aerosolized when handled during
repackaging. In this special case, the role of continuous air monitoring is to provide an alert to health
physics personnel that the air concentrations of concern have exceeded a threshold such that the
planned level of protection afforded by PPE has been or could be exceeded. This level would typically be
many 10’s or 100’s of times higher than the derived air concentration (DAC) established for unprotected
workers. The monitoring alarm or alert would therefore be designed not to be confused with the normal
© ISO 2017 – All rights reserved 1

---------------------- Page: 9 ----------------------
oSIST prEN ISO 16639:2019
ISO 16639:2017(E)

monitoring alarm, and the action taken in response would be similarly targeted at the specific site and
personnel involved.
The air sampling strategy should be designed to minimize internal exposures and balanced with social,
technical, economic, practical, and public policy considerations that are associated with the use of the
radioactive substance.
A comprehensive air sampling strategy should also consider that the air sampling program is only
one element of a broader radiation protection program. Therefore, individuals involved with the air
sampling program should interact with personnel working in other elements of the radiation protection
program, such as contamination control and internal dosimetry.
This document does not address outdoor air sampling, effluent monitoring, or radon measurements.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 11929, Determination of the characteristic limits (decision threshold, detection limit and limits of the
confidence interval) for measurements of ionizing radiation — Fundamentals and application
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at http:// www .electropedia .org/
— ISO Online browsing platform: available at http:// www .iso .org/ obp
3.1
accuracy
closeness of agreement between a measured value and a true value
3.2
aerodynamic diameter
D
a
-3
diameter of a sphere with density 1 000 kg·m that has the same sedimentation velocity in quiescent
air as the actual particle of arbitrary shape and density
3.3
aerosol
dispersion of solid or liquid particles in air or other gas
Note 1 to entry: An aerosol is not only the aerosol particles.
3.4
airborne radioactive substance
radioactive substance dispersed in the air in the form of dusts, fumes, particulates, mists, vapours,
or gases
3.5
air contamination area
area accessible to individuals where the measured activity concentrations of an airborne radioactive
substance exceeds or is likely to exceed the applicable national criteria
2 © ISO 2017 – All rights reserved

---------------------- Page: 10 ----------------------
oSIST prEN ISO 16639:2019
ISO 16639:2017(E)

3.6
air sampler
device designed to pass a known volume of air containing a radioactive substance through a filter or
other media and thereby trapping the airborne radioactive substance on the sampling media
3.7
annual limit on intake
ALI
derived limit for the amount of radioactive substance (in Bq) taken into the body of an adult worker by
inhalation or ingestion in a year
3.8
breathing zone
BZ
uniform description of the volume of air directly around the worker‘s upper body and head, which may
be drawn into the lungs during the course of breathing
Note 1 to entry: An air sample representative of the breathing zone is usually considered to be representative if
drawn from within about 30 cm of the worker’s head.
3.9
breathing zone sampler
BZA
air sampler located in the breathing zone
Note 1 to entry: Other common terms include “personal air sampler” (PAS), “personal air monitor” (PAM), “lapel
air samplers” or “fixed air sampler”.
Note 2 to entry: In the case of workers using PPE which includes full face (or even whole body suit) respirator
equipment and supplied air, as when preparing for entry into high levels of airborne radioactive substances,
special BZA or protective equipment samplers may be needed. Such BZAs are not always mandated then, but the
decision should be based on the contaminant levels and types of PPE involved and the potential for contamination
entering the suit or air immediately surrounding the suit just as PPE are being doffed.
3.10
continuous air monitor
CAM
instrument that continuously monitors the airborne activity concentration on a near real-time basis
3.11
continuous monitoring
active and continual monitoring of activity concentration in room air in near real time
Note 1 to entry: This approach uses continuous air monitors to assess activity concentration in air and can alarm
when predetermined levels are exceeded.
3.12
derived air concentration
DAC
concentration of a radionuclide in air that, if breathed over the period of a work year, would result in the
intake of one ALI for that radionuclide
Note 1 to entry: The DAC is calculated by dividing the ALI by the volume of air breathed by reference man under
-3
light-activity work during a working year (in Bq·m ).
Note 2 to entry: The parameter values recommended by the International Commission on Radiological Protection
3 -1 3
for calculating the DAC are a breathing rate of 1,2 m ·h and a working year of 2 000 h (i.e. 2 400 m ).
Note 3 to entry: The air concentration can be expressed in terms of a number of DAC. For example, if the DAC
-3 -3
for a given radionuclide in a particular form is 0,2 Bq·m and the observed concentration is 1,0 Bq·m , then the
observed concentration can also be expressed as 5 DAC (i.e. 1,0 divided by 0,2)
© ISO 2017 – All rights reserved 3

---------------------- Page: 11 ----------------------
oSIST prEN ISO 16639:2019
ISO 16639:2017(E)

Note 4 to entry: The derived air concentration-hour (DAC-h) is an integrated exposure and is the product of the
concentration of a radioactive substance in air (expressed as a fraction or multiple of DAC for each radionuclide)
and the time of exposure to that radionuclide, in hours.
[SOURCE: References [5] and [10], modified]
3.13
detection limit
L
D
smallest true value of the measurand which ensures a specified probability of being detectable by the
measurement procedure
Note 1 to entry: For a given type-I error (or false alarm probability, i.e. typically 0,05), L is the lowest net count
D
(or rate) with the desired probability of detection, i.e. typically 0,95 (otherwise stated as a type-II error of 0,05 or
a missed detection probability of 5 %).
Note 2 to entry: The measurand is the quantity subject to measurement.
3.14
grab sample
air sample of a sufficient volume drawn over a relatively short duration
3.15
intake
activity of a radionuclide taken into the body in a given time period or as a result of a given event
[SOURCE: ISO 20553:2006, 3.10]
3.16
personal air monitor
personal air sampler
breathing zone sampler
3.17
personal protective equipment
PPE
equipment designed to limit worker exposure to contaminants in the air or that are easily resuspended
from contaminated surfaces
Note 1 to entry: Includes partial or full-face respirators, face masks, gloves, boots, whole body anti-contamination
coveralls, and self-contained breathing apparatus (SCBA), depending on conditions.
3.18
potential missed exposure
PME
time-integrated activity concentration or maximum activity concentration, as applicable, that can
acceptably be missed
Note 1 to entry: The detection limit of the method of measuring the activity concentration shall be less than or
equal to the selected PME, which is defined according to ALARA/ALARP principles, and below legal limits.
3.19
sampling
collection of a radioactive substance on media such as filters, absorbers or adsorbers that is analysed
for radioactive content after collection
3.20
standard refer
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.