Chemical analysis of ferrous materials - Analysis of Ferro-silicon - Determination of Al, Ti and P by inductively coupled plasma optical emission spectrometry

This Technical Report describes an inductively coupled plasma optical emission spectrometric method for the determination of Al, Ti and P contents in Ferro Silicon materials.
The method is applicable to:
- Al content between 0,2 and 2 %;
- Ti content between 0,02 and 0,25 %;
- P content between 0,005 and 0,05 %.
This Technical Report also describes the general requirements for analysis by inductively coupled plasma optical emission spectrometry, the preparation and dissolution of the test sample and the method of calculation of the results.
The procedure is valid for the analytical lines given in Table 1. This table also gives, for each line, the spectral interferences, which must be accurately corrected.
NOTE   The interferences extend as well as other possible interferences depend on the temperature in the plasma and on the optical resolution of the spectrometer used.
Table 1 - Spectral lines suggested together with the interferences which shall be corrected
Element   Wavelength (nm)   Interferences
Al   308,22   V
Ti   337,28   V, Ni
P   178,29   Mo

Chemische Analyse von Ferrolegierungen - Analyse von Ferrosilicium - Bestimmung von Al, Ti und P durch induktiv gekoppeltes Plasma und optische Emissionsspektrometrie

Analyse chimique des matériaux ferreux - Analyse du ferro-silicium - Détermination de Al, Ti et P par spectrométrie d'émission optique avec source à plasma induit

Le présent Rapport Technique décrit une méthode par spectrométrie d'émission optique avec source à plasma induit, pour la détermination des teneurs en Al, Ti et P des alliages ferro-silicium.
La méthode est applicable aux :
-   teneurs en Al comprises entre 0,2 et 2 % ;.
-   teneurs en Ti comprises entre 0,02 et 0,25 %.
-   teneurs en P comprises entre 0,005 et 0,05 %.
Le présent Rapport Technique décrit aussi les exigences principales pour l’analyse par spectrométrie d'émission optique avec source à plasma induit, la préparation et mise en solution de l’échantillon pour essai et la méthode de calcul des résultats.
La procédure est valable pour les longueurs d’onde indiquées dans le Tableau 1. Pour chaque longueur d’onde, ce Tableau indique aussi les interférences spectrales qui doivent être corrigées avec exactitude.
NOTE   L’étendue des interférences et la possibilité d’autres interférences dépendent de la température dans le plasma et de la résolution optique du spectromètre utilisé.

Kemična analiza železovih zlitin - Analiza ferosilicija - Določevanje Al, Ti in P z direktno spektrometrijo optične emisije z induktivno sklopljeno plazmo

To tehnično poročilo opisuje metodo za določevanje Al, Ti in P z direktno spektrometrijo optične emisije z induktivno sklopljeno plazmo v ferosilikonskih materialih. Ta metoda se uporablja za: - vsebnost Al med 0,2 in 2 %; - vsebnost Ti med 0,02 in 0,25 %; - vsebnost P med 0,005 in 0,05 %. Postopek je potrjen za analitične linije, navedene v preglednici 1. Preglednica za vsako linijo navaja tudi spektralne interference, ki se morajo korigirati.

General Information

Status
Published
Publication Date
23-Nov-2011
Technical Committee
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
11-Nov-2011
Due Date
16-Jan-2012
Completion Date
24-Nov-2011

Buy Standard

Technical report
TP CEN/TR 10353:2012
English language
29 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)

SLOVENSKI STANDARD
SIST-TP CEN/TR 10353:2012
01-januar-2012
.HPLþQDDQDOL]DåHOH]RYLK]OLWLQ$QDOL]DIHURVLOLFLMD'RORþHYDQMH$O7LLQ3]
GLUHNWQRVSHNWURPHWULMRRSWLþQHHPLVLMH]LQGXNWLYQRVNORSOMHQRSOD]PR
Chemical analysis of ferrous materials - Analysis of Ferro-silicon - Determination of Al, Ti
and P by inductively coupled plasma optical emission spectrometry
Chemische Analyse von Ferrolegierungen - Analyse von Ferrosilicium - Bestimmung von
Al, Ti und P durch induktiv gekoppeltes Plasma und optische Emissionsspektrometrie
Analyse chimique des matériaux ferreux - Analyse du ferro-silicium - Détermination de
Al, Ti et P par spectrométrie d'émission optique avec source à plasma induit
Ta slovenski standard je istoveten z: CEN/TR 10353:2011
ICS:
77.040.30 Kemijska analiza kovin Chemical analysis of metals
77.080.10 Železo Irons
SIST-TP CEN/TR 10353:2012 en,fr
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------

SIST-TP CEN/TR 10353:2012

---------------------- Page: 2 ----------------------

SIST-TP CEN/TR 10353:2012


TECHNICAL REPORT
CEN/TR 10353

RAPPORT TECHNIQUE

TECHNISCHER BERICHT
November 2011
ICS 77.080.10
English Version
Chemical analysis of ferrous materials - Analysis of ferro-silicon
- Determination of Al, Ti and P by inductively coupled plasma
optical emission spectrometry
Analyse chimique des matériaux ferreux - Analyse du ferro- Chemische Analyse von Ferrolegierungen - Analyse von
silicium - Détermination de Al, Ti et P par spectrométrie Ferrosilizium - Bestimmung von Al, Ti und P durch induktiv
d'émission optique avec source à plasma induit gekoppeltes Plasma und optische Emissionsspektrometrie


This Technical Report was approved by CEN on 24 April 2011. It has been drawn up by the Technical Committee ECISS/TC 102.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland,
Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.





EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: Avenue Marnix 17, B-1000 Brussels
© 2011 CEN All rights of exploitation in any form and by any means reserved Ref. No. CEN/TR 10353:2011: E
worldwide for CEN national Members.

---------------------- Page: 3 ----------------------

SIST-TP CEN/TR 10353:2012
CEN/TR 10353:2011 (E)
Contents Page
Foreword .3
1 Scope .4
2 Normative references .4
3 Principle .4
4 Reagents .5
5 Apparatus .6
6 Sampling .6
7 Procedure .7
8 Expression of results . 12
9 Precision . 12
10 Test report . 12
Annex A (informative) Plasma optical emission spectrometer - Suggested performance criteria to
be checked . 13
Annex B (informative) Test samples used for the precision test . 16
Annex C (informative) Detailed results obtained from the precision test . 17
Bibliography . 29

2

---------------------- Page: 4 ----------------------

SIST-TP CEN/TR 10353:2012
CEN/TR 10353:2011 (E)
Foreword
This document (CEN/TR 10353:2011) has been prepared by Technical Committee ECISS/TC 102 “Methods
of chemical analysis for iron and steel”, the secretariat of which is held by SIS.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.
3

---------------------- Page: 5 ----------------------

SIST-TP CEN/TR 10353:2012
CEN/TR 10353:2011 (E)
1 Scope
This Technical Report describes an inductively coupled plasma optical emission spectrometric method for the
determination of Al, Ti and P contents in ferro-silicon materials.
The method is applicable to:
 Al contents between 0,2 and 2 %;
 Ti contents between 0,02 and 0,25 %;
 P contents between 0,005 and 0,05 %.
The procedure is valid for the analytical lines given in Table 1. This table also gives, for each line, the spectral
interferences, which shall be corrected.
NOTE The interferences extent as well as other possible interferences depend on the temperature in the plasma and
on the optical resolution of the spectrometer used.
Table 1 — Spectral lines recommended together with the interferences which shall be corrected
Element Wavelength (nm) Interferences
Al 308,22 V
Ti 337,28 V, Ni
P 178,29 Mo

2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
EN ISO 648, Laboratory glassware — Single-volume pipettes (ISO 648:2008)
EN ISO 1042, Laboratory glassware — One-mark volumetric flasks (ISO 1042:1998)
3 Principle
Dissolution of a test portion with nitric, hydrofluoric and perchloric acids. Addition of hydrochloric acid.
Filtration and ignition of the acid insoluble residue.
Fusion of the residue with sodium hydrogen sulphate, dissolution of the melt and addition of this solution to
the reserved filtrate.
After suitable dilution and, if necessary, addition of an internal reference element, the solution is filtered and
nebulised into an inductively coupled plasma optical emission spectrometer.
The intensity of the emitted light from each element is then measured (simultaneously with that emitted from
the internal reference element, where relevant).
4

---------------------- Page: 6 ----------------------

SIST-TP CEN/TR 10353:2012
CEN/TR 10353:2011 (E)
4 Reagents
During the analysis, use only reagents of recognised analytical grade and only distilled water or water of
equivalent purity.
The same reagents should be used for the preparation of calibration solutions and of sample solutions.
4.1 Hydrofluoric acid, HF (ρ = 1,13 g/ml)
20
WARNING — Hydrofluoric acid is extremely irritating and corrosive to skin and mucous membranes
producing severe skin burns which are slow to heal. In the case of contact with skin, wash well with
water, apply a topical gel containing 2,5 % (mass fraction) calcium gluconate, and seek immediate
medical treatment.
4.2 Hydrochloric acid, HCl (ρ = 1,19 g/ml)
20
4.3 Hydrochloric acid, solution 1 + 1
Add 500 ml of hydrochloric acid (4.2) to 500 ml of water.
4.4 Hydrochloric acid, solution 1 + 9
Add 50 ml of hydrochloric acid (4.2) to 450 ml of water.
4.5 Nitric acid, HNO (ρ = 1,40 g/ml)
3 20
4.6 Perchloric acid, HClO (ρ = 1,68 g/ml)
4 20
4.7 Sodium hydrogen sulphate
4.8 Pure iron
The purity of the iron selected shall be at least ten times better than the low limit of the scope of each element
included in the present method.
4.9 Aluminium, 0,5 g/l standard solution
Weigh (0,5 ± 0,001) g of aluminium (99,98 % purity) and transfer into a 400 ml beaker. Add 50 ml of
hydrochloric acid solution (4.3) and heat gently until aluminium is completely dissolved. After cooling, transfer
the solution quantitatively into a 1 000 ml one-mark volumetric flask, dilute to the mark with water and mix
well.
1 ml of this solution contains 0,5 mg of Al.
4.10 Titanium, 0,5 g/l standard solution
Weigh (0,5 ± 0,001) g of titanium (99,98 % purity) and transfer into a 400 ml beaker. Add 25 ml hydrochloric
acid solution (4.3) and 5 to 10 drops of hydrofluoric acid (4.1). Heat gently until titanium is completely
dissolved. After cooling, transfer the solution quantitatively into a 1 000 ml one-mark volumetric flask, dilute to
the mark with water and mix well.
1 ml of this solution contains 0,5 mg of Ti.
5

---------------------- Page: 7 ----------------------

SIST-TP CEN/TR 10353:2012
CEN/TR 10353:2011 (E)
4.11 Titanium, 0,05 g/l standard solution [freshly prepared]
Transfer 20 ml of titanium standard solution (4.10) into a 200 ml one-mark volumetric flask. Dilute to the mark
with water and mix well.
1 ml of this solution contains 0,05 mg of Ti.
4.12 Phosphorus, 0,1 g/l standard solution [freshly prepared]
Weigh (0,4393 ± 0,001) g of dried potassium dihydrogen phosphate and transfer into a 250 ml beaker.
Dissolve it with water. Transfer the solution quantitatively into a 1 000 ml one-mark volumetric flask, dilute to
the mark with water and mix well.
1 ml of this solution contains 0,1 mg of P.
4.13 Phosphorus, 0,01 g/l standard solution [freshly prepared]
Transfer 20,0 ml of phosphorus standard solution (4.12) into a 200 ml one-mark volumetric flask. Dilute to the
mark with water and mix well.
1 ml of this solution contains 0,01 mg of P.
4.14 Scandium, 1 g/l solution
Weight (1,534 ± 0,001) g of scandium oxide, Sc O , (99,98 % purity) and transfer into a 600 ml beaker.
2 3
Dissolve in 40 ml nitric acid (4.5). Transfer into a 1 000 ml one-mark volumetric flask. Dilute to the mark with
water and mix well.
5 Apparatus
All volumetric glassware shall be class A and calibrated, in accordance with EN ISO 648 or EN ISO 1042 as
appropriate.
5.1 Platinum crucibles and covers
5.2 Polytetrafluoroethylene (PTFE) beakers
5.3 Optical emission spectrometer, equipped with inductively coupled plasma
This shall be equipped with a nebulisation system. The instrument used will be satisfactory if, after optimising
in accordance with the manufacturer’s instructions, it meets the performance criteria given in Annex A.
The spectrometer can be either of simultaneous or of sequential type. A sequential spectrometer can be
equipped with an extra arrangement for simultaneous measurement of the internal reference element emitted
light. In this case the sequential spectrometer can be used for the measurement method using the internal
reference element. If the sequential spectrometer is not equipped with this arrangement, the internal reference
element shall not be used.
6 Sampling
Sampling shall be carried out in accordance with appropriate international or national standards for ferro
alloys.
6

---------------------- Page: 8 ----------------------

SIST-TP CEN/TR 10353:2012
CEN/TR 10353:2011 (E)
7 Procedure
7.1 Preparation of the test solution
7.1.1 Test portion
Weigh, to the nearest 0,001 g, 0,5 g of the test sample.
7.1.2 Dissolution of the test portion
Transfer the test portion (7.1.1) into a platinum crucible (5.1) having a suitable capacity or into a
polytetrafluoroethylene (PTFE) beaker (5.2).
Add 10 ml of nitric acid (4.5) and, in small portions, 10 ml of hydrofluoric acid (4.1). After each addition swirl
the crucible or the beaker and allow the reaction to subside. Then heat to complete the dissolution.
NOTE If the internal reference element is not used, care must be taken in order to avoid uncontrolled evaporation of
the acids, since differences in acid concentrations in the different solutions will give interference. A way to homogenise the
residual acid concentration is the evaporation of the sample solution to dryness, followed by the dissolution of the salts.
Add 2,5 ml of perchloric acid (4.6) and heat until copious white fumes appear. Cool, rinse the sides of the
crucible or that of the beaker with water and swirl to dissolve the salts. Repeat the heating to copious fumes.
Cool and add 15 ml of hydrochloric acid (4.4). Heat gently, in order to dissolve all salts. Filter the solution
through a close texture filter paper, collect the filtrate into a 250 ml beaker and rinse the crucible or the PTFE
beaker and the filter with hot water. Reserve the filtrate.
Transfer the filter into a platinum crucible (5.1), dry at about 105 °C and then heat at about 600 °C to remove
organic matter. Ignite at 1 000 °C, to remove volatile oxides, for 15 min.
Cool, add 0,5 g of sodium hydrogen sulphate (4.7) and melt. Cool and dissolve the fusion products with the
minimum quantity of water. Add this solution quantitatively to the filtrate in the 250 ml beaker.
Transfer the solution quantitatively into a 100 ml volumetric flask. If the internal reference element is used add,
with a calibrated pipette, 0,5 ml of the scandium solution (4.14).
Make up to the mark with water and mix well.
7.2 Preparation of the calibration solutions
7.2.1 Aluminium: calibration solutions
Transfer 0,15 g of pure iron (4.8) in each of a series of six 400 ml beakers and dissolve with 10 ml of nitric
acid (4.5).
NOTE The iron amount (0,15 g) corresponds to a test portion of a ferro-silicon having a 30-70 % average
composition.
After dissolution add 2,5 ml of perchloric acid (4.6) and evaporate to copious fumes. After cooling at room
temperature, add 15 ml of hydrochloric acid (4.4) and heat gently, in order to dissolve the salts. Add 0,5 g of
sodium hydrogen sulphate (4.7) and swirl to dissolve this reagent.
With calibrated pipettes, add the volumes of the aluminium standard solution (4.9) shown in Table 2.
Transfer each solution quantitatively into a series of 100 ml volumetric flasks. If the internal reference element
is used add, with a calibrated pipette, 0,5 ml of the scandium solution (4.14).
7

---------------------- Page: 9 ----------------------

SIST-TP CEN/TR 10353:2012
CEN/TR 10353:2011 (E)
Dilute to the mark with water and mix well.
Table 2 — Composition of the calibration solutions for aluminium
Calibration solution Aluminium standard Corresponding Corresponding
label solution volumes (4.9) aluminium mass aluminium content in
the sample
(ml) (mg)
(%)
0
0 0 0
2 1,0 0,2
1
4 2,0 0,4
2
7 3,5 0,7
3
10 5,0 1,0
4
20 10,0 2,0
5

7.2.2 Titanium: calibration solutions
Proceed as specified in 7.2.1 from "Transfer 0,15 g of pure iron…" until "…and swirl to dissolve the salts."
With calibrated pipettes, add the volumes of the titanium standard solutions (4.10 or 4.11) shown in Table 3.
Transfer each solution quantitatively into a series of 100 ml volumetric flasks. If the internal reference element
is used add, with a calibrated pipette, 0,5 ml of the scandium solution (4.14).
Dilute to the mark with water and mix well.
8

---------------------- Page: 10 ----------------------

SIST-TP CEN/TR 10353:2012
CEN/TR 10353:2011 (E)
Table 3 — Composition of the calibration solutions for titanium
Calibration solution Titanium standard Corresponding titanium Corresponding titanium
label solutions volumes mass content in the sample
(4.10 or 4.11) (mg) (%)
(ml)
0 0
0 0
2,0 (4.11) 0,10 0,02
1
5,0 (4.11) 0,25 0,05
2
10,0 (4.11) 0,50 0,10
3
2,0 (4.10) 1,00 0,20
4
2,5 (4.10) 1,25 0,25
5

7.2.3 Phosphorus: calibration solutions
Proceed as specified in 7.2.1 from "Transfer 0,15 g of pure iron…" until "…and swirl to dissolve the salts."
With calibrated pipettes, add the volumes of the phosphorus standard solutions (4.12 or 4.13) shown in
Table 4.
Transfer each solution quantitatively into a series of 100 ml volumetric flasks. If the internal reference element
is used add, with a calibrated pipette, 0,5 ml of the scandium solution (4.14).
Dilute to the mark with water and mix well.
Table 4 — Composition of the calibration solutions for phosphorus
Calibration solution Phosphorus standard Corresponding Corresponding
label solutions volumes (4.12 phosphorus mass phosphorus content in
or 4.13) the sample
(mg)
(ml) (%)
0 0
0 0
2,5 (4.13) 0,025 0,005
1
5,0 (4.13) 0,050 0,010
2
10,0 (4.13) 0,100 0,020
3
15,0 (4.13) 0,150 0,030
4
2,5 (4.12) 0,250 0,050
5

7.2.4 Multi-elemental calibration solutions (Al, Ti and P)
Proceed as specified in 7.2.1 from "Transfer 0,15 g of pure iron…" until "…and swirl to dissolve the salts."
With calibrated pipettes, add the volumes of the aluminium, titanium and phosphorus standard solutions (4.9,
4.10 or 4.11 and 4.12 or 4.13) shown in Table 5.
9

---------------------- Page: 11 ----------------------

SIST-TP CEN/TR 10353:2012
CEN/TR 10353:2011 (E)
Transfer each solution quantitatively into a series of 100 ml volumetric flasks. If the internal reference element
is used add, with a calibrated pipette, 0,5 ml of the scandium solution (4.14).
Dilute to the mark with water and mix well.
NOTE In this way any possible matrix effect will be minimized.
Table 5 — Composition of the multi-elemental calibration solutions (Al, Ti and P)
Calibration Aluminium Titanium Titanium Phosphorus Phosphorus
solution standard standard standard standard standard
label solution volumes solution volumes solution volumes solution volumes solution volumes
(4.9) (4.10) (4.11) (4.12) (4.13)
(ml) (ml) (ml) (ml) (ml)
0 0 0
0 0 0
20 [2,0 %] --- 2,0  [0,02 %] --- 15,0 [0,030 %]
1
10 [1,0 %] --- 5,0  [0,05 %] 2,5 [0,05 %] ---
2
7 [0,7 %] --- 10,0  [0,10 %] --- 5,0 [0,010 %]
3
4 [0,4 %] 2,0 [0,20 %] --- --- 2,5 [0,005 %]
4
2 [0,2 %] 2,5 [0,25 %] --- --- 10,0 [0,020 %]
5

7.3 Spectrometric measurements
7.3.1 Adjustment of the apparatus
Start the inductively coupled plasma optical emission spectrometer (5.3) and let it stabilise in accordance with
the manufacturer’s instructions before taking any measurements.
At the wavelengths of the analytical lines specified in Table 1, adjust all relevant instrumental parameters, as
well as the pre-spraying and the integrating times, according to the instrument manufacturer’s instructions
while aspirating (for each element) the highest concentration calibration solution.
NOTE Depending on the instrument configuration these parameters may include the outer, intermediate or central
gas flow-rates, the torch position, the entrance slits, the exit slits and the photomultiplier tubes voltage.
Prepare the software for measurements of the intensity, and for the calculation of the mean value and relative
standard deviation corresponding to each analytical line.
If the internal reference element (scandium in this case) is used, prepare the software to calculate the ratio
between the intensity of each analyte and the scandium intensity.
The intensity of the internal reference element shall be measured simultaneously with that of the analyte
intensity.
7.3.2 Spectrometric measurements of the calibration solutions
Carry out the spectrometric measurements of the calibration solutions (7.2.1, 7.2.2, 7.2.3 or 7.2.4). It is
recommended to use a simultaneous spectrometer for measurements using “internal reference element” (ratio
mode) (see 5.3).
For each calibration solution, carry out three to five integrations and calculate the corresponding mean
intensity or mean ratioed intensity.
10

---------------------- Page: 12 ----------------------

SIST-TP CEN/TR 10353:2012
CEN/TR 10353:2011 (E
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.