Welcome to theiTeh Standards

Source for standards, engineering specifications, manuals and technical publications

In a collaboration with Slovenian Institute of Standardization we provide standards from ISO, IEC, CEN, CENELEC, ETSI, and SIST

Standards Packages

iTeh together with SIST has developed and compiled a comprehensive collection of standard packages to support your standard requirements. Our packages cover an array of content that includes quality management, risk management, road vehicles, machine safety, and much more. With over 200 packages to choose from, you are sure to find a collection to suit your standard needs.

Latest Standards

REN/ERM-TGMAR-616

  • Standard
    21 pages
    English language
    sale 15% off
  • Standard
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes a test procedure for sampling, elution, detection, and quantification of N-nitrosamines in air samples derived from a test chamber according to EN 16516:2017+A1:2020. The following N-nitrosamines are covered:
-Nitrosodimethylamine, CAS No. 62-75-9,
- N-Nitrosomethylethylamine, CAS No. 10595-95-6,
- N-Nitrosodiethylamine, CAS No. 55-18-5,
- N-Nitrosodipropylamine, CAS No. 621-64-7,
- N-Nitrosodiisopropylamine, CAS No. 601-77-4,
- N-Nitrosodibutylamine, CAS No. 924-16-3,
- N-Nitrosopiperidine, CAS No. 100-75-4,
- N-Nitrosopyrrolidine, CAS No. 930-55-2 and
- N-Nitrosomorpholine, CAS No. 59-89-2.

  • Technical specification
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This CENELEC Guide establishes useful guidelines for the preparation and use of standards in the field of electromagnetic compatibility (EMC) in general, and in particular for the implementation of the EMC Directive and the Radio Equipment Directive (RED). This Guide is intended to be used by Technical Committees.
The purpose of this guide is to give advice on:
-  the preparation of dedicated Product and Product Family Standards;
-  the application of EMC Standards.
Certification aspects are not covered by this Guide.
NOTE Certification is the action by a third party demonstrating that adequate confidence is provided that a duly identified product, process or service is in conformity with a standard or with other normative documents.

  • Guide
    40 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies analytical methods for the determination of major, minor and trace elements and of anions in aqueous eluates from construction products. It refers to the following 67 elements:
Aluminium (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), boron (B), cadmium (Cd), calcium (Ca), cerium (Ce), caesium (Cs), chromium (Cr), cobalt (Co), copper (Cu), dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), gallium (Ga), germanium (Ge), gold (Au), hafnium (Hf), holmium (Ho), indium (In), iridium (Ir), iron (Fe), lanthanum (La), lead (Pb), lithium (Li), lutetium (Lu), magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), neodymium (Nd), nickel (Ni), palladium (Pd), phosphorus (P), platinum (Pt), potassium (K), praseodymium (Pr), rubidium (Rb), rhenium (Re), rhodium (Rh), ruthenium (Ru), samarium (Sm), scandium (Sc), selenium (Se), silicon (Si), silver (Ag), sodium (Na), strontium (Sr), sulphur (S), tellurium (Te), terbium (Tb), thallium (Tl), thorium (Th), thulium (Tm), tin (Sn), titanium (Ti), tungsten (W), uranium (U), vanadium (V), ytterbium (Yb), yttrium (Y), zinc (Zn), and zirconium (Zr) and to the following four anions: Cl-, Br-, F-, SO42-.
This document also describes how to measure general parameters like pH, electrical conductivity, DOC/TOC.
The methods in this European Standard are applicable to construction products.
NOTE   Construction products include e.g. mineral-based products (S); bituminous products (B); metals (M); wood-based products (W); plastics and rubbers (P); sealants and adhesives (A); paints and coatings (C), see also CEN/TR 16045.
The selection of analytical methods to be applied is based on the required sensitivity of the method, which is provided for all substance – analytical procedure combinations.

  • Standard
    29 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies analytical methods for the determination of major, minor and trace elements in aqua regia digests of construction products. It refers to the following 67 elements:
Aluminium (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), boron (B), cadmium (Cd), calcium (Ca), cerium (Ce), cesium (Cs), chromium (Cr), cobalt (Co), copper (Cu), dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), gallium (Ga), germanium (Ge), gold (Au), hafnium (Hf), holmium (Ho), indium (In), iridium (Ir), iron (Fe), lanthanum (La), lead (Pb), lithium (Li), lutetium (Lu), magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), neodymium (Nd), nickel (Ni), palladium (Pd), phosphorus (P), platinum (Pt), potassium (K), praseodymium (Pr), rubidium (Rb), rhenium (Re), rhodium (Rh), ruthenium (Ru), samarium (Sm), scandium (Sc), selenium (Se), silicon (Si), silver (Ag), sodium (Na), strontium (Sr), sulphur (S), tellurium (Te), terbium (Tb), thallium (Tl), thorium (Th), thulium (Tm), tin (Sn), titanium (Ti), tungsten (W), uranium (U), vanadium (V), ytterbium (Yb), yttrium (Y), zinc (Zn), and zirconium (Zr).
The methods in this European Standard are applicable to construction products.
NOTE Construction products include e.g. mineral‐based products (S); bituminous products (B); metals (M); wood‐based products (W); plastics and rubbers (P); sealants and adhesives (A); paints and coatings (C), see also CEN/TR 16045.
The selection of analytical methods to be applied is based on the required sensitivity of the method, which is provided for all combinations of substance and analytical procedure.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1) This European Standard specifies a Dynamic Surface Leaching Test (DSLT) which is aimed at determining the release per unit surface area as a function of time of inorganic and/or non-volatile organic substances from a monolithic, plate- or sheet-like product, when it is put into contact with an aqueous solution (leachant). The test method is not suitable for substances that are volatile under
ambient conditions.
(2) This test is a parameter specific test focusing on identifying and specifying parameter specific properties tested under specified conditions. It is not aimed at simulating real situations. The application of results to specific intended conditions of use may be established by means of modelling (not included in this Technical Specification).
(3) The modification for granular construction products with low hydraulic conductivity (Annex A) applies for granular particles with so little drainage capacity between the grains that percolation in percolation tests and in practice is nearly impossible.
(4) The test method applies to more or less regularly shaped test portions consisting of monolithic test pieces with minimum dimensions of 40 mm in all directions (volume > 64 000 mm3 (64 cm3)). It also applies to plate- or sheet-like products with surface areas of minimum 10 000 mm2 (100 cm2) exposed to the leachant. Products designed to drain water (e.g. draining tiles, porous asphalt) and monolithic granular products according to EN 16637-1, Table 1, are also tested by this test method. All products to be tested are assumed to maintain their integrity over a time frame relevant for the considered intended use.
(5) Metals, metallic coatings and organic coatings on metals are excluded from the scope of EN 16637-2 because the principles of this test (diffusion) are not obeyed by these products. Guidance on the need for testing of these products is under consideration.
(6) For some coatings (e.g. some renders with organic binders according to EN 15824) in intermittent contact to water, physical and chemical properties might be changed in permanent contact with water. For these products EN 16637-2 is not appropriate.
(7) Guidance on the applicability of the test method to a given product is outlined in EN 16637-1.
NOTE 1 This test method is only applicable if the product is chemically stable and the matrix does not dissolve. For construction products that may be used in contact with water this usually should not be the case as construction products should then be dimensionally stable. If a product may substantially wear in its intended use, the test cannot provide proper information. If the product contains a substantial amount of water-soluble compounds, e.g. gypsum or anhydrite, the matrix may (partially) dissolve and lead to dimensional instability of the test piece. In this case the test standard also cannot be used.
NOTE 2 Volatile organic substances include the low molecular weight substances in mixtures such as mineral oil.
NOTE 3 It is not always possible to optimize test conditions simultaneously for inorganic and organic substances and optimum test conditions may also vary between different groups of organic substances. Test requirements for organic substances are generally more stringent than those for inorganic substances. The test conditions suitable for measuring the release of organic substances will
generally also be applicable to inorganic substances.

  • Standard
    72 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    73 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61757-6-1:2024 defines the terminology, structure, and measurement methods of optical displacement sensors based on fibre Bragg gratings (FBGs) as the sensing element. This document also specifies the most important features and characteristics of these fibre optic displacement sensors and defines procedures for measuring these features and characteristics.

  • Standard
    26 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document defines terms used in the field of the assessment of the release, and the content, of dangerous substances from/in construction products.
The terms are classified under the following main headings:
-   Terms related to products and substances (general; soil, groundwater and surface water; indoor air);
-   Terms related to sampling and sample preparation;
-   Terms related to test procedures and test results (general; soil, groundwater and surface water; indoor air, radiation).
An alphabetical index is provided.
NOTE   Further terms generally concerning the development and application of technical specifications for construction products which fall under the scope of the construction products regulation (CPR) are listed in Annex A; their definitions are given in a Glossary by the European Commission, DG Enterprise and Industry (2014).

  • Standard
    90 pages
    English, French and German language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    79 pages
    English, French and German language
    sale 10% off
    e-Library read for
    1 day

This document specifies existing methods for the determination of the content of specific organic substances in construction products. The following parameters are covered: BTEX, biocides, dioxins, furans and dioxin-like PCBs, mineral oil, nonylphenols, PAH, PCB, PCP, PBDE, and short-chain chlorinated paraffins. The methods listed in this document come from different fields and are suitable for organic substances in organic extracts from all types of constructions products. The methods in this document are validated for the product types listed in Annex A.
NOTE Construction products include e.g. mineral-based products, bituminous products, wood-based products, polymer-based products and metals. This document includes analytical methods for all matrices except metals.

  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes the pros and cons for the different methods for reporting the potential release of dangerous substances into soil, groundwater or surface water and indoor air, which are:
—   level (or declared values); and
—   classes;
as defined in the Construction Products Regulation (CPR).
In addition, the pros and cons of additional methods based on discussion in CEN/TCs and WGs are described, which are:
—   categories; and
—   manufacturer’s declaration.

  • Technical report
    30 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    30 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    6 pages
    English language
    sale 15% off
  • Standard
    6 pages
    French language
    sale 15% off
  • Draft
    8 pages
    English language
    sale 15% off
  • Draft
    8 pages
    English language
    sale 15% off

This document specifies tests for the emissions of particulate matter from the gas pathways of a medical device, its parts or accessories, which are intended to provide respiratory care or supply substances via the respiratory tract to a patient in all environments. The tests of this document are intended to quantify particles from 0,25 µm diameter to 10 µm diameter that are emitted by the medical device, its parts or accessories into the respirable gas stream. This document establishes acceptance criteria for these tests. This document does not address nanoparticles. Insufficient data exist to establish exposure limits for particles less than 0,25 µm diameter. This document does not address particles larger than 10 µm diameter. These particles are deposited in the nasal cavity. Additional information can be needed for medical devices or accessories that bypass the nose. This is outside the scope of this document but can be required by some authorities having jurisdiction. This document therefore adopts the same approach as the US Environmental Protection Agency (EPA) in setting limits based solely on particle size and not their chemistry. This document addresses potential contamination of the gas stream arising from the gas pathways, which is then conducted to the patient. This document applies over the expected lifetime of the medical device in normal use and takes into account the effects of any intended processing. This document does not address biological evaluation of the particles that are deliberately released by a nebulizer (i.e. the therapeutic agent). This document does not address biological evaluation of the surfaces of gas pathways that have direct contact with the patient. The requirements for direct contact surfaces are found in the ISO 10993 series. Medical devices, parts or accessories, containing gas pathways that are addressed by this document, include, but are not limited to, ventilators, anaesthesia workstations (including gas mixers), breathing systems, oxygen conserving devices, oxygen concentrators, nebulizers, low-pressure hose assemblies, humidifiers, heat and moisture exchangers, respiratory gas monitors, respiration monitors, masks, medical respiratory personal protective equipment, mouth pieces, resuscitators, breathing tubes, breathing systems filters, Y-pieces, and any breathing accessories intended to be used with such devices. The enclosed chamber of an incubator, including the mattress, and the inner surface of an oxygen hood are considered to be gas pathways and are also addressed by this document. This document does not address contamination already present in the gas supplied from the gas sources while medical devices are in normal use. EXAMPLE Contamination arriving at the medical device from gas sources such as medical gas pipeline systems (including the non-return valves in the pipeline outlets), outlets of pressure regulators connected or integral to a medical gas cylinder or room air taken into the medical device is not addressed by ISO 18562 (all parts).

  • Standard
    16 pages
    English language
    sale 15% off
  • Standard
    16 pages
    French language
    sale 15% off
  • Draft
    17 pages
    English language
    sale 15% off
  • Draft
    17 pages
    English language
    sale 15% off

This document applies to the BASIC SAFETY and ESSENTIAL PERFORMANCE of LENS REMOVAL DEVICES and VITRECTOMY DEVICES for ophthalmic surgery (as defined in 201.3.209 and 201.3.217) and associated ACCESSORIES that can be connected to this MEDICAL ELECTRICAL EQUIPMENT, hereafter referred to as ME EQUIPMENT. If a clause or subclause is specifically intended to be applicable to ME EQUIPMENT only, or to ME SYSTEMS only, the title and content of that clause or subclause will say so. If that is not the case, the clause or subclause applies both to ME EQUIPMENT and to ME SYSTEMS, as relevant. HAZARDS inherent in the intended physiological function of ME EQUIPMENT or ME SYSTEMS within the scope of this document are not covered by specific requirements in this document except in 7.2.13 of IEC 60601-1:2005 and IEC 60601 1:2005/AMD2:2020 and 8.4.1 of IEC 60601-1:2005. IEC 80601-2-58:2024 cancels and replaces the second edition published in 2014 and its Amendment 1:2016. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) the alignment of this particular standard based on the amendment of IEC 60601-1:2005, IEC 60601-1:2005/AMD1:2012 and IEC 60601-1:2005/AMD2:2020; b) updating collateral, particular and IEC 60601-1:2005, IEC 60601-1:2005/AMD1:2012 and IEC 60601-1:2005/AMD2:2020 references to align with amendments to IEC 60601-1:2005, IEC 60601-1:2005/AMD1:2012 and IEC 60601-1:2005/AMD2:2020 and other collateral standards; c) updated normative references; d) added new requirement for particulate matter from APPLIED PARTS in 201.9.5.101; e) adding the shadow light method in 201.12.1.101.7; f) clarify test conditions for EMC requirements in 202.7.1.2; g) updated Table D.4 references to include specific IEC references to the symbols and delete “Annex AA, 201.7.6.101”; h) include a new annex to address the relevant general safety and performance requirements of European regulation (EU) 2017/745 (Annex BB); i) remove all references of the LIQUEFACTION FRAGMENTATION LENS REMOVAL method.

  • Standard
    73 pages
    English and French language
    sale 15% off
  • Draft
    31 pages
    English language
    sale 15% off

IEC 60794-2-24:2024 is a detail specification and specifies indoor multiple multi-fibre unit cables for use in MPO (multi-fibre push on) connector terminated breakout cable assemblies.

  • Draft
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method intended for determining the effect on the colour of textiles of all kinds, except loose fibres, to the action of weather as determined by exposure to simulated weathering conditions in a test chamber equipped with a xenon arc lamp. This document focuses on textiles (such as apparel) where the main evaluation criterium is the colour fastness. This method can be used to determine if a textile is sensitive to the combined effect of light and water. NOTE 1 General information on colour fastness to light is given in Annex A. NOTE 2 ISO 105-B10 provides guidance on testing textiles or technical textiles, which are permanently exposed to an outdoor environment and/or require mechanical testing (such as tensile strength determination).

  • Standard
    13 pages
    English language
    sale 15% off
  • Standard
    14 pages
    French language
    sale 15% off
  • Draft
    13 pages
    English language
    sale 15% off
  • Draft
    13 pages
    English language
    sale 15% off

This document specifies tests for the emissions of volatile organic substances from the gas pathways of a medical device, its parts or accessories, which are intended to provide respiratory care or supply substances via the respiratory tract to a patient in all environments. The tests of this document are intended to quantify emissions of volatile organic substances that are added to the respirable gas stream by the materials of the gas pathway. This document establishes acceptance criteria for these tests. NOTE Gaseous emission of volatile organic substances includes emissions of volatile organic compounds, semi-volatile organic compounds and very volatile organic compounds. This document addresses potential contamination of the gas stream arising from the gas pathways of medical devices or accessories, which is then conducted to the patient. This document applies over the expected lifetime of the medical device in normal use and takes into account the effects of any intended processing. This document does not address biological evaluation of the surfaces of gas pathways that are in direct contact with the patient. The requirements for direct contact surfaces are found in the ISO 10993 series. Medical devices, parts or accessories containing gas pathways that are addressed by this document include, but are not limited to, ventilators, anaesthesia workstations (including gas mixers), breathing systems, oxygen conserving devices, oxygen concentrators, nebulizers, low-pressure hose assemblies, humidifiers, heat and moisture exchangers, respiratory gas monitors, respiration monitors, masks, medical respiratory personal protective equipment, mouth pieces, resuscitators, breathing tubes, breathing systems filters, Y-pieces and any breathing accessories intended to be used with such devices. The enclosed chamber of an incubator, including the mattress, and the inner surface of an oxygen hood are considered to be gas pathways and are also addressed by this document. This document does not address contamination already present in the gas supplied from the gas sources while medical devices are in normal use. EXAMPLE Contamination arriving at the medical device from gas sources such as medical gas pipeline systems (including the non-return valves in the pipeline outlets), outlets of pressure regulators connected or integral to a medical gas cylinder or room air taken into the medical device is not addressed by ISO 18562 series. This document is intended to be read in conjunction with ISO 18562-1.

  • Standard
    15 pages
    English language
    sale 15% off
  • Standard
    16 pages
    French language
    sale 15% off
  • Draft
    21 pages
    English language
    sale 15% off
  • Draft
    21 pages
    English language
    sale 15% off

This document specifies: — the general principles governing the biological evaluation within a risk management process of the gas pathways of a medical device, its parts or accessories, which are intended to provide respiratory care or supply substances via the respiratory tract to a patient in all environments; — the general categorization of gas pathways based on the nature and duration of their contact with the gas stream; — the evaluation of existing relevant data from all sources; — the identification of gaps in the available data set on the basis of a risk analysis; — the identification of additional data sets necessary to analyse the biological safety of the gas pathway; — the assessment of the biological safety of the gas pathway. This document covers general principles regarding biocompatibility assessment of medical device materials, which make up the gas pathway, in normal use and normal condition. This document does not cover biological hazards arising from mechanical damage. The other parts of ISO 18562 cover specific tests that address potentially hazardous substances that are added to the respirable gas stream and establish acceptance criteria for these substances. This document addresses potential contamination of the gas stream arising from the gas pathways within the medical device, which might then be conducted to the patient. This document applies over the expected lifetime of the medical device when operated according to the instructions for use. This includes degradation arising from exposure to environmental conditions as well as cleaning, disinfection and sterilisation (i.e. processing). It also includes user action or inaction (omission) that leads to an unintended or unexpected outcome (result) (i.e. use error). It does not include conscious/intentional action or inaction that violates the instructions for use and is beyond reasonable risk control by the manufacturer (i.e. abnormal use). This document does not address biological evaluation of the surfaces of medical devices that have direct contact with the patient or user. The requirements for direct contact surfaces are found in the ISO 10993 series. Medical devices, parts or accessories containing gas pathways that are addressed by this document include, but are not limited to, ventilators, anaesthesia workstations (including gas mixers), breathing systems, oxygen conserving equipment, oxygen concentrators, nebulizers, low-pressure hose assemblies, humidifiers, heat and moisture exchangers, respiratory gas monitors, respiration monitors, masks, medical respiratory personal protective equipment, mouth pieces, resuscitators, breathing tubes, breathing system filters and Y-pieces as well as any breathing accessories intended to be used with such medical devices. The enclosed chamber of an incubator, including the mattress, and the inner surface of an oxygen hood are considered to be gas pathways and are also addressed by this document. This document does not address contamination already present in the gas supplied from the gas sources while medical devices are in normal use. EXAMPLE Contamination arriving at the medical device from gas sources such as medical gas pipeline systems (including the non-return valves in the pipeline outlets), outlets of pressure regulators connected or integral to a medical gas cylinder, or room air taken into the medical device is not addressed by ISO 18562 (all parts).

  • Standard
    34 pages
    English language
    sale 15% off
  • Standard
    35 pages
    French language
    sale 15% off
  • Draft
    40 pages
    English language
    sale 15% off
  • Draft
    40 pages
    English language
    sale 15% off

The ISO/IEC 30137 series is applicable to the use of biometrics in VSSs (also known as closed circuit television or CCTV systems) for a number of scenarios, including real-time operation against watchlists and in post-event analysis of video data. In most cases, the biometric mode of choice will be face recognition, but this document also provides guidance for other modalities, such as gait recognition. This document: — defines the key terms for use in the specification of biometric technologies in a VSS, including metrics for defining performance; — provides guidance on the selection of camera types, placement of cameras, image specification, etc., for the operation of a biometric recognition capability in conjunction with a VSS; — provides guidance on the composition of the gallery (or watchlist) against which facial images from the VSS are compared, including the selection of appropriate images of sufficient quality, and the size of the gallery in relation to performance requirements; — makes recommendations on data formats for facial images and other relevant information (including metadata) obtained from video footage, used in watchlist images, or from observations made by human operators; — establishes general principles for supporting the operator of the VSS, including user interfaces and processes to ensure efficient and effective operation, and highlights the need to have suitably trained personnel; — highlights the need for robust governance processes to provide assurance that the implemented security, privacy and personal data protection measures specific to the use of biometric technologies with a VSS (e.g. internationally recognizable signage) are fit for purpose, and that societal considerations are reflected in the deployed system. This document also provides information on related recognition and detection tasks in a VSS, such as: — estimation of crowd densities; — determination of patterns of movement of individuals; — identification of individuals appearing in more than one camera; — use of other biometric modalities such as gait or iris; — use of specialized software to infer attributes of individuals, e.g. estimation of gender and age; — interfaces to another related functionality, e.g. video analytics to measure queue lengths or to provide alerts for abandoned baggage.

  • Standard
    46 pages
    English language
    sale 15% off
  • Draft
    48 pages
    English language
    sale 15% off
  • Draft
    48 pages
    English language
    sale 15% off

This document specifies two procedures for determining the decrease in counterforce exerted by a test piece of vulcanized or thermoplastic rubber which has been compressed to a constant deformation and maintained thus at a predetermined test temperature. The counterforce can be determined either by means of a continuous-measurement system or by a discontinuous-measurement one. Two test methods are specified, method A and method B. In method A the compression and all measurements of counterforce are made at test temperature and in method B the compression and all measurements of counterforce are made at standard laboratory temperature. Method A and method B do not give the same results, as in method B the shrinkage of the material from the test temperature to standard laboratory temperature is included in the result. Two forms of test piece are specified in this document: cylindrical test pieces and rings. Comparison of results is valid only when made on test pieces of similar size and shape. The use of ring test pieces is particularly suitable for the determination of stress relaxation in liquid environments. This document deals only with testing at constant ambient or elevated temperature. Testing at temperatures below standard laboratory temperature is not specified. The methods have been used for low‑temperature testing, but their reliability under these conditions is not proven.

  • Standard
    14 pages
    English language
    sale 15% off
  • Standard
    15 pages
    French language
    sale 15% off
  • Draft
    14 pages
    English language
    sale 15% off
  • Draft
    14 pages
    English language
    sale 15% off

This document specifies tests for substances leached by liquid water condensing in gas pathways of a medical device, its parts or accessories, which are intended to provide respiratory care or supply substances via the respiratory tract to a patient in all environments. The chemical characterization methods described in this document apply to chemical substances that could leach from the medical device, its parts or accessories into the condensate. This document establishes verifiable acceptance criteria for these tests. The identity and quantity of each chemical released is intended for toxicological risk assessment as described in ISO 18562-1:2024. This document addresses potential contamination of the gas stream arising from the gas pathways, which deliver breathing gas to the patient. This document applies over the expected lifetime of the medical device in normal use and takes into account the effects of any intended processing. This document does not address biological evaluation of the surfaces of gas pathways that have direct contact with the patient. The requirements for direct contact surfaces are found in the ISO 10993 series. Medical devices, parts or accessories containing gas pathways that are addressed by this document include, but are not limited to, ventilators, anaesthesia workstations (including gas mixers), breathing systems, oxygen conserving devices, oxygen concentrators, nebulizers, low-pressure hose assemblies, humidifiers, heat and moisture exchangers, respiratory gas monitors, respiration monitors, masks, medical respiratory personal protective equipment, mouth pieces, resuscitators, breathing tubes, breathing systems filters, Y-pieces and any breathing accessories intended to be used with such devices. The enclosed chamber of an incubator, including the mattress, and the inner surface of an oxygen hood are considered to be gas pathways and are also addressed by this document. This document does not address contamination already present in the gas supplied from the gas sources while medical devices are in normal use. EXAMPLE Contamination arriving at the medical device from gas sources such as medical gas pipeline systems (including the non-return valves in the pipeline outlets), outlets of pressure regulators connected or integral to a medical gas cylinder, or room air taken into the medical device. This document does not address contact with drugs or anaesthetic agents. If a medical device or accessory is intended to be used with anaesthetic agents or drugs, then additional testing can be required. This document is intended to quantify hazardous water-soluble substances that are leached from the medical device, its parts or accessories by condensate and then conveyed by that liquid to the patient.

  • Standard
    16 pages
    English language
    sale 15% off
  • Standard
    17 pages
    French language
    sale 15% off
  • Draft
    23 pages
    English language
    sale 15% off
  • Draft
    23 pages
    English language
    sale 15% off

Benefits

Full Standards Solution

Full Standards Solution

Our catalog includes not only latest standards but also full meta information about related standardization project lifecycle.

Cost Effective

Cost Effective

Our PRICE MATCH GUARANTEE policy with multi-level volume discounts gives our clients the best option in the market. In addition, you can get access to the standards for 3, 10, or 30 days.

Stay Notified

Stay Notified

Get alerted to the latest revisions and new standards in the Weekly Newsletter. Standards are constantly changing. Don’t miss a revision that can impact your business.

6 Reasons Why We are The BEST at What We Do

Compliance with international standards is increasingly becoming one of the key competitive advantages in the global market. Our company creates all conditions for the most comfortable implementation of new documents and norms in the processes carried out by your organization. Some of the key advantages of working with us are:

  • Cost-effective - multi-level discounts and permanent updates of the functions give our clients the best option on the market.
  • e-Library - access to standards for a period of time of your choice. It is a cost-effective solution for keeping updated with the newest standards.
  • Company-wide documents - create a company account and connect all employees with access to purchased standards, e-Library documents, and packages.
  • All in one spot - all purchased standards are kept in one place with controlled access by the account administrator.
  • Client-centric - providing quality consulting is the prerogative and incentive to create new products that accompany your success and scale.
  • 24 / 7 client support

We are dedicated to building mutually beneficial and long-term relationships with our clients. That is why our team focuses on creating services to help our customers develop and achieve new productive results.

About Us

iTeh Inc is a software development and IT consulting team of professionals who provide consulting, development and implementation of solutions for all types of businesses.

In cooperation, with the Slovenian Institute of Standardization (SIST), we create a unique solution that covers all aspects of the lifecycle of Standardization organizations. iTeh Standards is a part of the solution that helps SIST to provide and sell their products to Customers.

iTeh Standards Store is an evolving project, our goal is to build long-term relationships with our customers. We believe in delivering quality services to solve our customers' challenges and define success by exceeding our customers' expectations. We are always ready to listen and our experience allows us to provide our customers with helpful effective suggestions. You can contact us by email.

We are committed to providing the best possible experience for our customers.